TDO : Formules de Taylor

L'idée d’approximer une fonction par un polynéme est trés an-
cienne en analyse. Le but évident est d’appréhender un objet «compli-
qué» (la fonction) par un objet plus simple (un polynéme). Dans ce T.D.
on pose la question suivante : Soit / une fonction n fois dérivable en
x9. Comment approximer f par un polyéme p de degré n qui vérifie
pP(xo) = FP(xo) ? (un tel polyndome est dit osculatoire)

Plus précisemment on va décomposer cette question en plusieurs
étapes :

— Peut-on toujours trouver un tel polynéme ?

— Est-il unique ?

— Comment le calculer ?

— Est-ce que ce polynéme est une bonne approximation de f ?

Exercice 1. On considere la fonction x — exp(x) sur R. Trouver un
polynéme p de degré trois qui vérifie p(0) = exp(0), p'(0) = exp’(0),
p"(0) = exp”(0) et p®(0) = exp®(0).

Cas général : soit f une fonction n fois dérivable en xy et p
un polynéme de degré n. Ecrire le systéme qui traduit les égalités
pP(x0) = fFP(xg). Ce systeme est-il inversible ?

Exercice 2. Montrer que I’exerice précédent permet de répondre a la
question.

Exercice 3. Oublier I’ exercice précédent ! Nous allons démontrer
autrement 'unicité du polynéme osculatoire.
1. Montrer que si p(xg) = p'(xg) = --- = p®(xg) = 0 alors (x—x0)**1 | p
(on dit que x¢ est une racine d’ordre 2+ 1 de p).
2. Supposons que p; et pg soient deux polynémes osculatoires de
degré n pour la fonction f en xy. Montrer que x( est une racine
d’ordre n+1 de p; —po.

3. Conclure.

Definition 1. Une fonction est dite de classe 6" sur [a,b] si f est n
fois dérivable sur [a,b] et si £ est continue sur [a, b].

Théoréme 1. [Formule de Taylor-Lagrangel Soit f : [a,b] — R
une application de classe €" sur [a,b], telle que f™*D existe sur
la,b[. Alors

—_ ) _ \n+l
3¢ €la, bl £(B) = F(@)+(B-a)f @)+t LD prgy, L=
n! (n+1)!

N

f(n+ D(C)

reste de Lagrange

La formule de Taylor-Lagrange admet une version locale avec le
théoréme suivant :

Théoreme 2. [Formule de Taylor-Young] Soit f une fonction de
classe €" ! sur I et a € I avec f™(a) existe. Alors pour tout x dans
un voisinage de a on a :

f(n)(a)

— (x—a)"+o((x—a)"?)

4ot

(x—a)

£ = F@)+f @ x—a)+ L 2(“) 2

Exercice 4. Vérifier que la partie principale du développement de
Taylor satisfait les équations du systéme linéaire précédent.

Lorsqu’on utilise un polynéme pour approximer une fonction il est
indispensable de se poser la question de I'erreur.

Exercice 5. Estimer le degré du polynéme de Taylor relatif a la fonc-
tion f(x) =In(1+x) en 0 qui garantit une approximation correcte a
trois décimales pour 0 <x < 1.

Exercice 6. Soit f : I — R une fonction deux fois différentiable en
a €I. On notera 6y la courbe représentative de f.

1. Rappeler I'équation de la tangente a 67 en (a, f(a)).

2. Montrer par la formule de Taylor Young que 6y est localement
au-dessus de la tangente en (a, f(a)) lorsque f"(a) > 0. Que se
passe-t-il si f"(a) <0 ?

3. Que peut-on dire de la position relative de 6 par rapport a la
tangente en (a, f(a)) lorsque f"(a) = 0.
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TD 1 : Interpolation

Objectifs du TD :

e Comprendre l'objet «polynéme d’interpolation» (existence, uni-
cité).

e Savoir le calculer (Forme de Lagrange, forme de Newton)

e Se poser la question de l'erreur.

Exercise 1. 1. Question de cours : définir le polynome d’interpo-
lation pour une fonction f : I — R pour un support a n + 1 points.
Comment montre-t-on I'unicité du polynéme d’interpolation ?

2. Application : Soient f :x— vx—1et g:x— sin(5(x—1)) définies
sur [1,2]. Montrer que ces deux fonctions ont le méme polynéme
d’interpolation pour le support {1,1.5,2}.

Exercise 2. On consideére n + 1 points distincts xg,x1,...,x, dun in-
tervalle I = [a,b] de R. Soit (/;)o<i<n la famille des polynémes de
Lagranges associés au support {xg,...,%,}.

1. Montrer que pour tout i de {0,...,n} la fonction /; est de degré n
et vérifie

V(i,k) €10,...,n}%, 1i(xp) = Oy
ou §; 1, est le symbole de Kronecker.

2. Montrer que la famille des Lagrange (;)9<i<n constitue une base
de 2,.

3. Pour tout (i,%) de {0,...,n}2 déterminer [ ;(xk). Simplifier I'écri-
ture lorsque i = k.
Exercise 3. On donne trois valeurs d'une fonction K définie sur [1,6]

K(1)=1.5709, K(4)=1.5727, K(6)=1.5751

1. En utilisant les polynémes de Lagrange relatifs au support
{1,4}, fournir une valeur approchée de K(3.5) grace au polynoéme
d’interpolation de K de degré un.

2. En utilisant les polynémes de Lagrange relatifs au support
{1,4,6}, fournir une valeur approchée de K(3.5) griace au poly-
noéme d’interpolation de K de degré deux.

3. Traiter de nouveau ces deux questions en utilisant la forme de
Newton.

4. Comparer les deux méthodes et conclure.
Exercise 4. Montrer que les différences divisées sont symétriques.

Exercise 5. [Une expression théorique des différences divisées]

1. Avec les notations habituelles, démontrer 1'égalité suivante don-
nant une autre expression des différences divisées :

Vk €{0,...,n}, _— o)

’ ﬁ)(xi - ;)

'].:.
J#i

flxo,x1,....,x¢1=

i fx;)

1

On pourra utiliser 1a décomposition du polynéme p; sur la base
des polynoémes de Lagrange.

2. Grace a (1) retrouver les expressions de f[xg] et de flxg,x1].

3. Comparer la complexité de la formule (1) pour calculer les dif-
férences divisées flxol, flxo,x1], ..., flxg,...,x,] par rapport a
Palgorithme pyramidal. Conclure.

Exercise 6. [Extension de la notion de différence divisée]
On considere une fonction numérique f de la variable réelle définie
sur l'intervalle I =[A,B] de R. Soit a, b, ¢ trois points distincts de I.

1. On définit la fonction F par F(x) = f [a,x].

(a) Déterminer le domaine de définition de F. Trouver une
hypotheése (H1) portant sur f suffisante pour que F' soit
prolongeable par continuité en a.

(b) Sous (H1), calculer la limite de F en a ; inventer une nota-
tion pour représenter cette limite.

(c) Quelle proposition vient-on d’établir concernant les diffé-
rences divisées ? En déduire que I'on vient de donner un
sens a une différence divisée dont les arguments ne sont
pas distincts.
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TD 1 : Interpolation

2. On définit la fonction G par G(x) = fla,x,c].
(a) Déterminer le domaine de définition de G.

(b) Trouver une hypothese (Hs) portant sur f suffisante pour
que G soit prolongeable par continuité en a et c.

(c) Sous (Hy), calculer les limites de G en a et ¢; inventer une
notation pour représenter ces limites.

(d) Vérifier que le sens donné aux nouvelles notations res-
pecte la propriété fondamentale permettant le calcul des
«différences divisées classiques».

3. Sous (H2), on considere la fonction H définie par H(x) = fla,a,x].
Adapter les questions de la question antérieure pour généraliser
la démarche proposée.

4. Que conjecturer pour prolonger les questions antérieures ?

5. En utilisant ces nouvelles notations comment pouvez-vous écrire
le polynéme osculatoire de degré n en x¢ a f (vous ferez les
hypotheses nécessaires sur f) en termes de différences divisées
?

6. Quelle généralisation de la théorie des polynémes d’interpola-
tion proposeriez-vous ?

Exercise 7. Soit f :[a,b] — R une fonction continue que I'on souhaite
interpoler.

1. Rappeler les formules vues en cours pour le calcul de ’erreur.

2. En faisant des hypotheses supplémentaires de régularité sur
[ déterminer une majoration du nombre de points de support
nécessaires pour que l'erreur d’interpolation en tout point x €
[a,b] soit inférieure a €, ou € est un réel strictement positif.

Exercise 8. Soient n € N* et f une fonction de R dans R de classe C3
sur l'intervalle I = [a, b]. Pour tout i appartenant a {0,...,n}, on pose
xi=a+thouh=(0b-a)n.

1. Soienti€{0,...,n—1} et p; 1 le polyndome d’'interpolation de degré
un de f en x; et x;41

Exprimer l'erreur d’interpolation e; 1(x) = f(x) — p; 1(x) pour un
élément x de [x;,x;+1] et majorer sa valeur absolue indépendam-
ment de i.

. On consideére une table a pas constant A1 et on interpole linéai-

rement [ entre les nceuds. Soit € > 0. Déduire de la question
précédente une majoration du pas A1 garantissant une précision
inférieure a €.

. Soient n =2, €{0,...,n -2} et p; 5 le polynéme d’interpolation

de degré deux de f en x;, x;j+1 et xj42

Exprimer I'erreur d’interpolation e; 2(x) = f(x) — p; 2(x) pour un
élément x de [x;,x;.2] et majorer sa valeur absolue indépendam-
ment de i.

. On considére une table a pas constant Ao et on interpole de

facon quadratique f entre les nceuds. Soit € > 0. Déduire de la
question précédente une majoration du pas kg garantissant une
précision inférieure a €.

. Application numérique : on donne €€ {1072,107%},a=1,b=3

et f(x) = v/x. Calculer A1 et ho. Méme calcul pour f(x) = e*.
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TD 2 : Courbes de Bézier

Objectifs du TD :

e Savoir tracer une courbe de Bézier a partir du polygone de
controle.

e Comprendre les liens entre les propriétés des polynémes de
Berstein, les propriétés géométriques de la courbe et le polygone
de contrdle.

o Comprendre I'algorithme de de Casteljau.

Exercise 1. — Calculer les polynémes de Bernstein de degré 5.
— Montrer que les polynomes de Berstein B} forment une base
pour l'espace vectoriel &2,.

Exercise 2. On considére dans le plan rapporté au repére (0,7,7)
le polygone de contrdle suivant : P = (Py,P1,P2,P3,P4) avec Py =
(4,4),P1 =(0,-10),P2 =(0,14),P3 = (4,0).
1. Calculer avec I'algorithme de de Casteljau les coordonées du
point de la courbe de Bézier associée pour ¢ = 1/2.

2. Etablir les équations paramétriques de la courbe de Bézier défi-
nie par P.

3. Faire I’étude de la courbe et la tracer.
4. Vérifier sur 'exemple que la tangente au temps ¢ = 0 correspond

a la droite (PoP1) et la tangente en ¢ = 1 a la droite (P2Ps3).
Généraliser.

Exercise 3. Etudier et tracer la courbe de Bézier de points de controle
Py(0,0),P1(-5,10),P2(5,10), P3(0,0). Déterminer 'image de cette courbe
par une similitude de centre (0,0) d’angle 5 et de rapport % ?

Exercise 4. On rappelle qu'une courbe paramétrée y admet un point
cusp pour le parameétre t( lorsque y'(¢9) = 0,y"(¢9) # 0 et y"'(¢) # 0.
1. Montrer que si y est une courbe de Bézier cubique, alors y’ est
une parabole passant par (0,0) en ¢.

2. Construire une telle parabole et en déduire un polygone de
controle qui produit une courbe de Bézier cubique avec un point
cusp.

Exercise 5. 1. Déterminer la complexité de 'algorithme de De
Casteljau pour évaluer y(¢g).

2. Comparer ce résultat a 1évalutation de y(¢¢) en utilisant le
schéma de Horner. Quel peut-étre I'intérét(s) de I'algorithme de
De Casteljau ?

Exercise 6. [médian 2009]

1. On considere g la courbe de Bézier cubique de polygone de
contrdle @ = (Qo,Q1,Q2,@3) ou Qo = (-1,-1),Q1 = (2,0),Q2 =
(-2,0),@3 =(1,-1).

(a) Etablir les équations paramétriques de la courbe g.
(b) Etudier les variations de g

(¢) Montrer que pour a = % la courbe admet un point double
en (0,0) (i.e. il existe t1 # t9 tels que g(t1) = g(¢2) = (0,0)).

On calculera pour cela les valeurs exactes t1 et 9.

(d) Tracer précisement la courbe g pour a = %.

2. On souhaite construire une courbe de Bézier y de degré 4 pos-
sédant deux points de rebroussement (point cusp). On rappelle
qu’'une condition suffisante pour avoir un tel point en #y est
Y(to)=0 ety"(t))# 0.

(a) Rappeler comment on associe a y la courbe de Bézier g de
degré 3 correspondant a y’ (2 une homothetie pres).

(b) Si on suppose que y admet deux points cusp que peut-on
dire de g ?

(c) Construire le polygone de contréle P = (Pgy,P1,P2,P3,P4)
de y.

(d) Sans calculer les équations de la courbe y positionner les
points cusps de y et esquisser la courbe a partir du polygone
de controle (on prendra une échelle suffisament grande, 1
unité=5cm, on pourra prendre comme valeur approchée
de t1 et tg, t1 = % et tg = % enfin on laissera les traits de
construction apparents).

3. Peut-on construire une courbe de Bézier de degré 4 avec plus de
deux points cusps ?
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Bip()=w; x(O)B; p—1(t) + (1 — ;41 £(E)Bj+11-1(F)

TD 3 : Courbes B-splines

Objectifs du TD : Exercise 5. [Final 2009] On considere le polygone de contréle P =
e Comprendre la définition et savoir calculer les fonctions B- (Po,P1,Ps,P3) avec P = (0,1), P1 =(2,3), P2 =(4,1) et P4 =(6,3) et un
splines. vecteur noeud 7 = (¢g,...,tg) tel que 0 <tg<t1<tg<---<tg<1.On

“1B; ,(t)P;

notera y2 la courbe B-splines de degré deux associée au vecteur noeud

e Comprendre la définition d'une courbe B-spline et comment les A
7 et au polygone de contrdle P.

propriétés de ces courbes se traduisent géométriquement.

—k
=0

1. Combien de fonctions B-splines de degré 2 géneére-t-on avec le

e Mettre en perspective les courbes de Bézier et les courbes B- 9
vecteur noeud 7 ?

splines.

Li

. Proposer un choix de noeuds possibles pour que y2 soit vissée
aux extrémités.

3. Soit ¢ € [t3,t4l.

\V]

Exercise 1. Soit le vecteur noeud suivant 7 =(0,1,2,3,4).

1. (a) Déterminer les fonctions B-spline B; o.

y(t)

(b) Etudier et représenter graphiquement ces fonctions. (a) Evaluer ys(t) en utilisant 'algorithme de Cox-De Boor et

obtenir une expression en fonction des coeffcients w3 1(2), w3 2(%), w2 2(¢)
et des points P1,Pg,P3 (on pourra présenter les calculs en
2. Méme question pour le noeud 7 =(0,1,2,2,3,4) et les fonctions mettant en évidence I'aspect triangulaire de I’algorithme).

B i,2-

(c) Vérifier sur cet exemple les propriétés de fonctions B-
splines.

(b) En déduire que si ¢t = ¢3 alors ya(¢3) = (1 — w22(¢3))P1 +

. R . w2,2(t)Ps.
Exercise 2. On considere 2 € N et on pose [a,b]=[0,1]. On considere

alors les B-splines, B; ;, définie pour les noeuds tg=¢1=---=t, =0et (c) Montrer alors que y2(¢3) est le milieu du segment [Py, Py]

si et seulement si t3 est le milieu de [£9,24].
bhe1 =tpr2 =" =top+1=1. 3 [£2,24]

4. En utilisant ce qui précede et les propriétés de tangence des
courbes B-splines de degré 2, tracer la courbe ¢ — yo(¢) sur
I'intervalle [0, 1] pour le noeud 7 = (0, 0,0, %, 1,1,1).

5. On considére maintenant un polygone de contréle a n + 1 points,
P=(Py,...,P,). Comment doit-on choisir le vecteur noeud pour

Exercise 3. Montrer la propriété dite de partition de 'unité des B- que la courbe B-splines de degré 2 soit vissée aux extrémités et

splines. passe par les points milieux des co6tés du polygone de controle

[Pi,Pi+1] pour 1= 1,...,n—2 ?

1. Fournir la relation de récurrence liant B; , a B; 1 et Bj11 -1
et montrer qu’on retrouve ainsi les polynomes de Bernstein.

2. Enoncer les propriétés vérfiées par les B-splines et retrouver
ainsi les propriétés des polynomes de Bernstein.

Exercise 4. Le but de I'exercice est de montrer que les courbes B- 6
splines de degré 2 définie par un polygone de contréle P = (Py,...,P,)

et un vecteur noeud tg=t1 =to <tz <---<tp_1<tp=tn+1=tnsto, sont
tangentes aux c6tés du polygone de controéle.

. Interpolation : on souhaite construire une courbe B-spline de
degré 2 vissée aux extrémités qui interpole une famille de n
points {(x;,y;),0 <i <n—1}. On choisira comme noeuds tg =% =
to=0,t3=-10 ta=-2c  ty =22t 1 =tpa=tpi3=1

1. Montrer que y2(¢;+1) est dans I’'enveloppe convexe formée par

P i—-1 et P i

2. Calculer y,(t;41). Conclure.

(a) Montrer que nous n’avons pas de choix pour les points de
controle Py et P,,.

(b) On suppose P; choisi. Comment faut-il choisir Py ?

MT44 : Analyse numérique & Splines UTBM



TD 3 : Courbes B-splines

(¢) Conclure qu’il existe une courbe B-spline de degré deux
qui interpole les points (x;,y;) ? Quels choix a-t-on pour les
tangentes aux extrémités ? Comparer avec le résultat vu
en cours sur les interpolations par B-splines de degré 3.

9

1B, ,(t)P;

—k
0

(d) Application : construire un polygone de contréle et un vec-
teur noeud qui génére une courbe B-splines de degré 2
passant par les points

{(1,0),(2,3),(4,1),(3,-1),(2,0)}

Tracer la courbe et son polygone de controle.

')’(t) = Zi

Bir(t)=w;r(®)B; 1)+ (1 - wi+1£(E))Bj+1 1-1(2)

Algorithme de de Boor-Cox

MT44 : Analyse numérique & Splines UTBM
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TD 4 : Intégration

Objectifs du TD :

e Savoir mettre en place une formule de quadrature pour I'inté-
gration numérique par les méthodes classiques (comprendre le
lien avec 'interpolation).

e Se poser la question de I'erreur.

e Comprendre la différence de qualité entre ces méthodes.

Exercise 1. 1. Appliquer la méthode de votre choix pour fournir
une approximation numérique de

2
I:f Vxdx (1)
0

2. Déterminer une borne supérieure théorique pour I'erreur com-
mise.

3. Comparer avec la valeur exacte de I.

Exercise 2. Soit f une fonction numérique de classe C* sur [a,b]. On
considere un pas constant d’intégration A pour f sur [a,b] et on note
xg, X1, ..., XN la suite associée a la subdivision de [a, b]. On se propose
de calculer, a € pres (¢ € R} s), 'intégrale

b
I=f f(x)dx

1. Déterminer le pas maximal A ,x autorisé en méthode des rec-
tangles, du point milieu, des trapézes et de Simpson pour que
la valeur absolue de I'erreur d’intégration commise soit majorée
par €.

En déduire le nombre de sous-intervalles a considérer pour
chacune des méthodes citées, afin d’évaluer I.

2. Application numérique : on donne
fx)=e*et glx)=vx,a=1, b=3, e=10"%

Interpréter les résultats obtenus.

3. Fournir un algorithme integ(f,a,b,ec — val) qui fourni a partir
de la donnée de f,a,b une valeur approchée de ff fx)dx ae
pres.

Exercise 3. On se propose de calculer numériquement avec précision
P + —x2
de € (¢ > 0) une valeur approchée de I = [, e~ dx.

1. Montrer que la fonction f a intégrer est €* et de dérivée qua-
triéme bornée sur [0, +ool.

2. En majorant f par des fonctions d’intégrales exprimables par
des primitives, montrer que I'intégrale considérée est conver-

gente et en déduire un réel A >0 tel que [ X ="y < 5.

3. Déterminer le pas constant & permettant par la méthode de
2
Simpson, de fournir une valeur approchée de I'intégrale f(f‘ e dx
a § pres.
4. Bilan ?

Exercise 4. Déterminer les fonctions polynémes pour lesquelles la
relation de Simpson fournit une valeur exacte de I'intégrale.

Exercise 5. Construire sa proppre méhode d’intégration. Les régles
d’intégration vues en cours étaient toutes construites a partir d’'une
interpolation sur des supports de points distincts. Que se passe-t-il
si on considére des méthodes de quadratures construites a partir de
support de points non disctincts ?

On considére f € €2([a,b]) et on veut estimer

b
sz f(x)dx (2)

1. Donner 'expression théorique du polynéme d’interpolation p1
de f pour le support {a,a}.

2. Déterminer une formule d’intégration.

3. Expliquer a partir d’'un dessin I'indée de la méthode.

4. Montrer que l'erreur de méthode s’exprime sous la forme :
_(b-a)
-6

5. Proposer une formule d’intégration pour une verion composéee
de la méthode et déterminer la formule de I'erreur correspon-
dante.

E ") avec ¢ €la, b[ 3)
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TD : Rappel produit scalaire

1 Définitions

Definition 1. Soit E un R-espace vectoriel. Un produit scalaire <,>:
E xE — R est une application bilinéaire, symétrique et définie positive.

Definition 2. Soit E un R-espace vectoriel muni d’'un produit scalaire.
On définit la norme euclidienne (ou norme associée au produit scalaire)
d’un vecteur v € E par :

[lv]] =v<v,v>.

Remark 1. On peut définir différents types de norme sur un méme
espace. En particulier il n’est pas nécessaire d’avoir un produit scalaire
pour définir une norme.

Exercise 1. On rappelle que sur R? le produit scalaire de deux vec-

X1 X9
teurs w =| y1 |et v =| ys | estdéfini par
y2 )
—_— —
Uu.v =x1x2+y1y2+2z129.

1. Vérifier rapidemment qu’il s’agit bien d’'un produit scalaire.

1 1 0
2. Labase{|] 2 |,| 0 |,] 1 |} est-elle orthonormée ?
0 1 2

Proposition 1. Sur 22, le crochet <,> défini par
1
<u,v >:f u(x)v(x)dxV(u,v) € P2
-1

est un produit scalaire.

Exercise 2. Prouver la proposition 1. Montrer que {x,1+ x2} sont
orthongonaux pour <,>. Calculer la norme de ces deux vecteurs.

Exercise 3. On rappelle que &2, représente 'ensemble des polynomes
de degré inférieur ou égal a n. Déterminer les vecteurs p; de &?; ortho-
gonaux a pg = 1. Puis le sous-espace des vecteurs de % orthogonaux

apoetpi.

2 Procédé de Gram-Schmidt

Etant donné E, espace vectoriel muni d’'un produit scalaire, peut-
on construire une base orthogonale ?
Soient u et v deux vecteurs non nuls de E, la projection de v sur v

est donnée par
- <u,v>
proj(u), = v
<v,v>

Si u et v sont libres on construit deux vecteurs orthogonaux de la
maniére suivante :

vi=vetvg=u-proj,, (u). (faire un dessin !)

Ce procédé se généralise a n vecteurs libres. On choisit un vecteur
v1 puis on construit vg par soustraction de la compostante du second
vecteur sur vi. Une fois vg construit on choisit un troisiéme vecteur
qu’on «orthogonalise» en enlevant les composantes sur v; et ve, etc...

Soit {©1,...,u,} une famille libre de E,

v1=1u1
Vg =ug— projy,(ug)
U3 =ug—proj,,(us)—proj,,(us)0

Un =Un— X1 projy,(u,)
Exercise 4. Construire «a la main» les quatre premiers vecteurs d'une
famille de polynémes (L;);en tels que :
1. deg(L;)=1.
2. L;(1)=1.
3. <L;,L;>=0pouri#,.

On partira de la base canonique que ’'on «redressera».
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TD 5 : Intégration gaussienne

Objectifs du TD :

e Savoir mettre en place une méthode d’intégration gaussienne.
o Comprendre la notion de méthode d’ordre optimal.

o Comprendre comment se construit I'intégration Gaussienne.

Exercise 1. [Vers I'intégration de Legendre]
On considere une fonction f, continue sur [—-1,1] et on pose

1
I(f)=[1f(x)dx.

On étudie dans cet exercice la formule de quadrature a deux points :

K(f)=Wof (x0) + W1 f (x1), (1)

ou xg et x1 sont deux réels distincts de ] —1,1[ et Wy et W7 sont deux
réels quelconques.

1. En remarquant que le polynéme v = (X —x0)(X —x1) n’est pas
de signe constant, on impose, comme dans le cours, la condition

1
f (x—x0)(x—x1)dx=0. (2)
-1

(a) Quelle condition sur xg et x1 fournit cette égalité ? Permet-
elle de déterminer completement xg et x1 ? Les réels xg =
—1/2 et x1 = 2/3 vérifient-ils (2) ?

(b) Sur le support {xg,x1}, on interpole f par un polynome de
degré un et on considere K(f) défini par (1). Pour f élément
de &3, calculer I(f)— K(f). En déduire que I(f)—K(f) est
nul si et seulement si f appartient a .

2. On impose , comme dans le cours, la condition supplémentaire

1
f (x — x0)%(x — x1)dx = 0. (3)
-1

(a) Quelle condition supplémentaire sur xq et x; fournit cette
égalité ? Déterminer alors x( et x1.

(b) Vérifier que I(f)— K(f) est nul si f appartient a &.

3. Peut-on espérer élever encore le degré des polynémes pour les-
quels la formule de quadrature (1) donne la valeur exacte de
I'intégrale ?

Exercise 2.

1. En utilisant les tables numériques (voir compléments en ligne),
évaluer numériquement l'intégrale

1 d
I f _dx_
-1 1+.7C2
par la méthode de Gauss-Legendre a n + 1 points avec n €
{0,...,5}.

2. Calculer la valeur exacte de I.
3. Comparer avec les valeurs approchées. Conclure.

Exercise 3. On considére l'intégrale I = [ \/lxj?dx

1. Calculer I. (on pourra utiliser le résultat suivant cos(x)* =
%cos(4x) + %cos(2x) + %, connaissez-vous un moyen de retouver
ce résultat ?)

2. Intégrer I numériquement par la méthode de Tchebychev sur
un support a trois points.

3. Comparer le résultat avec votre calcul de la question 1. Expli-
quer.

4. De combien de points a-t-on besoin pour évaluer de manieére
1 xZn
exacte dx ?
f—l ,/l_xZ

Exercise 4. Soit f une fonction continue sur [-1, 1], on pose

1
I(f)= f 1f(x)dx
On considére une méthode d’intégration numérique a n + 1 points :
I™™(f)=Wof(xg) + Wif(x1)+-+ Wy f(xy)

ou xg,...,%X, sont n+1réels de |- 1,1[ et Wy,..., W, sont les poids
associés (on rappelle que les poids W; sont calculés par W; = f_ll Li(x)dx
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TD 5 : Intégration gaussienne

ou /; est le i-eme polynéme de Lagrange).

On notera &7, I'ensemble des polynomes réels de degré inférieur
ou égal a k.

On dira qu'une méthode d’intégration numérique est d’ordre k si
elle est exacte pour tous les polynémes de degré inférieur ou égal a &
c’est a dire

VP e Py, I(P)=1"""(P)

1. Dans cette question on montre que 'ordre de la méthode est
inférieur ou égal 4 2n +1
(a) Soit P =(x—x¢)(x—x1)...(x—x,). Montrer que um(p2y =,
En déduire que I(P2) # I™“™(P?).
(b) Conclure qu’il n’existe pas de méthode numérique a n +1
points d’ordre 2n + 2.

2. Dans cette question on montre que la méthode est d’ordre n :
(a) Soit P un polynéme de degré n. Rappeler son écriture dans
la base de Lagrange pour le support {xg,...,x,} (on pourra
noter /; le i-eme polynéme de Lagrange).
(b) Montrer que I(P) = I"*"(P). Conclure que la méthode est
d’ordre n.

3. Dans cette question on suppose que xo,...,x, sont les racines du
n + 1-éme polynéme de Legendre L, 1. Soit P € 5, .1, on écrit
la division euclidienne de P par L, .1 :il existe deux polyndomes
Q@ et R tels que P(x) = Q(x)L,+1(x)+ R(x) avec deg(R)<n+1.

(a) Montrer que I"™™(P)=I"""(R).
(b) Quel est le degré maximum de @ ? Utiliser une propriété
des polynémes de Legendre pour montrer (sans calculs) que
L Q@)L 1 1(x)dx = 0. En déduire 1, P(x)dx = [, R(x)dx.
(c) Pourquoi a-t-on I(R)=I1"""(R) ?
(d) Conclure que la méthode est d’ordre 2n + 1, i.e I(P) =
I"“™(P) pour tout P € %y, 1.
4. Réciproquement, montrer que si la méthode est d’ordre 2n +1

alors les noeuds xo, ..., x;, sont les racines du n + 1-éme polynéme
de Legendre.

Exercise 5. Intégration de Gauss-Martin]
Dans cet exercice on se propose de créer une méthode d’intégration
originale.

Soit f une fonction € sur [0, 1], on cherche a évaluer de maniére
optimale :

1
f f(x)(~In(x))dx 4)
0 H’—J

w(x)
Pour éviter les déboires calculatoires on donne le résultat sui-

vant valable pour tout a = 0 (utilisable quand vous le souhaitez dans
Pexercice) :

1
f x%(—=In(x))dx = 5)
0

1
(a +1)2
On considéere sur I'espace vectoriel des fonctions polyndomes &2 le
crochet suivant

(y: PxP — R

1 (6)
(p,q) ~— <p,q>=f0 px)q(x)(—In(x))dx

1. Montrer que (,) définit un produit scalaire sur 2.
1
(p+q+1)2

3. On considere le polynome My de degré 2 donné par Ma(x) =
5 17
2

2. Montrer que pour tout p,g e Non a (x?,x9) =

(a) Vérifier que (M2,1) =0 et (Mo,x) =0.
(b) En déduire que M2 1 &; (c’est-a-dire My est orthogonal a
tout polyndéme de degré inférieur ou égal a 1).

4. Expliquer pourquoi si on souhaite construire une méthode a
deux points pour évaluer numériquement (4), il serait judicieux
de considérer le support

5 /106 5 /106

= — = — 4+ —
o= M T T

Comment doit-on alors calculer Wy et W; (on ne demande pas
de faire le calcul explicite)?

} (7
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