
1+
x+

x2 2!
+x3 3!

+
x4 4!

+
x5 5!

+
x6 6!

+
x7 7!

+
..

.

TD0 : Formules de Taylor

L’idée d’approximer une fonction par un polynôme est très an-
cienne en analyse. Le but évident est d’appréhender un objet «compli-
qué» (la fonction) par un objet plus simple (un polynôme). Dans ce T.D.
on pose la question suivante : Soit f une fonction n fois dérivable en
x0. Comment approximer f par un polyôme p de degré n qui vérifie
p(i)(x0)= f (i)(x0) ? (un tel polynôme est dit osculatoire)

Plus précisemment on va décomposer cette question en plusieurs
étapes :

– Peut-on toujours trouver un tel polynôme ?
– Est-il unique ?
– Comment le calculer ?
– Est-ce que ce polynôme est une bonne approximation de f ?

Exercice 1. On considère la fonction x → exp(x) sur R. Trouver un
polynôme p de degré trois qui vérifie p(0) = exp(0), p′(0) = exp′(0),
p′′(0)= exp′′(0) et p(3)(0)= exp(3)(0).

Cas général : soit f une fonction n fois dérivable en x0 et p
un polynôme de degré n. Ecrire le système qui traduit les égalités
p(i)(x0)= f (i)(x0). Ce système est-il inversible ?

Exercice 2. Montrer que l’exerice précédent permet de répondre à la
question.

Exercice 3. Oublier l’ exercice précédent ! Nous allons démontrer
autrement l’unicité du polynôme osculatoire.

1. Montrer que si p(x0)= p′(x0)= ·· · = p(k)(x0)= 0 alors (x−x0)k+1 | p
(on dit que x0 est une racine d’ordre k+1 de p).

2. Supposons que p1 et p2 soient deux polynômes osculatoires de
degré n pour la fonction f en x0. Montrer que x0 est une racine
d’ordre n+1 de p1 − p2.

3. Conclure.

Definition 1. Une fonction est dite de classe C n sur [a,b] si f est n
fois dérivable sur [a,b] et si f (n) est continue sur [a,b].

Théorème 1. [Formule de Taylor-Lagrange] Soit f : [a,b] → R

une application de classe C n sur [a,b], telle que f (n+1) existe sur
]a,b[. Alors

∃c ∈]a,b[, f (b)= f (a)+(b−a) f ′(a)+·· ·+ (b−a)n

n!
f (n)(a)+ (b−a)n+1

(n+1)!
f (n+1)(c)︸ ︷︷ ︸

reste de Lagrange

La formule de Taylor-Lagrange admet une version locale avec le
théorème suivant :

Théorème 2. [Formule de Taylor-Young] Soit f une fonction de
classe C n−1 sur I et a ∈ I avec f (n)(a) existe. Alors pour tout x dans
un voisinage de a on a :

f (x)= f (a)+ f ′(a)(x−a)+ f ′′(a)
2

(x−a)2+·· ·+ f (n)(a)
n!

(x−a)n+o((x−a)n)

Exercice 4. Vérifier que la partie principale du développement de
Taylor satisfait les équations du système linéaire précédent.

Lorsqu’on utilise un polynôme pour approximer une fonction il est
indispensable de se poser la question de l’erreur.

Exercice 5. Estimer le degré du polynôme de Taylor relatif à la fonc-
tion f (x) = ln(1+ x) en 0 qui garantit une approximation correcte à
trois décimales pour 0< x < 1.

Exercice 6. Soit f : I → R une fonction deux fois différentiable en
a ∈ I. On notera C f la courbe représentative de f .

1. Rappeler l’équation de la tangente à C f en (a, f (a)).

2. Montrer par la formule de Taylor Young que C f est localement
au-dessus de la tangente en (a, f (a)) lorsque f ′′(a) > 0. Que se
passe-t-il si f ′′(a)< 0 ?

3. Que peut-on dire de la position relative de C f par rapport à la
tangente en (a, f (a)) lorsque f ′′(a)= 0.
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TD 1 : Interpolation

Objectifs du TD :

• Comprendre l’objet «polynôme d’interpolation» (existence, uni-
cité).

• Savoir le calculer (Forme de Lagrange, forme de Newton)

• Se poser la question de l’erreur.

Exercise 1. 1. Question de cours : définir le polynôme d’interpo-
lation pour une fonction f : I 7→R pour un support à n+1 points.
Comment montre-t-on l’unicité du polynôme d’interpolation ?

2. Application : Soient f : x 7→p
x−1 et g : x 7→ sin(π2 (x−1)) définies

sur [1,2]. Montrer que ces deux fonctions ont le même polynôme
d’interpolation pour le support {1,1.5,2}.

Exercise 2. On considère n+1 points distincts x0, x1, . . . , xn d’un in-
tervalle I = [a,b] de R. Soit (l i)0≤i≤n la famille des polynômes de
Lagranges associés au support {x0, . . . , xn}.

1. Montrer que pour tout i de {0, . . . ,n} la fonction l i est de degré n
et vérifie

∀(i,k) ∈ {0, . . . ,n}2, l i(xk)= δi,k

où δi,k est le symbole de Kronecker.

2. Montrer que la famille des Lagrange (l i)0≤i≤n constitue une base
de Pn.

3. Pour tout (i,k) de {0, . . . ,n}2 déterminer l′i(xk). Simplifier l’écri-
ture lorsque i = k.

Exercise 3. On donne trois valeurs d’une fonction K définie sur [1,6]

K(1)= 1.5709, K(4)= 1.5727, K(6)= 1.5751

1. En utilisant les polynômes de Lagrange relatifs au support
{1,4}, fournir une valeur approchée de K(3.5) grâce au polynôme
d’interpolation de K de degré un.

2. En utilisant les polynômes de Lagrange relatifs au support
{1,4,6}, fournir une valeur approchée de K(3.5) grâce au poly-
nôme d’interpolation de K de degré deux.

3. Traiter de nouveau ces deux questions en utilisant la forme de
Newton.

4. Comparer les deux méthodes et conclure.

Exercise 4. Montrer que les différences divisées sont symétriques.

Exercise 5. [Une expression théorique des différences divisées]

1. Avec les notations habituelles, démontrer l’égalité suivante don-
nant une autre expression des différences divisées :

∀k ∈ {0, ...,n}, f [x0, x1, ..., xk]=
k∑

i=0

f (xi)
k∏

j=0
j 6=i

(
xi − x j

) . (1)

On pourra utiliser la décomposition du polynôme pk sur la base
des polynômes de Lagrange.

2. Grâce à (1) retrouver les expressions de f [x0] et de f [x0, x1].

3. Comparer la complexité de la formule (1) pour calculer les dif-
férences divisées f [x0], f [x0, x1], ..., f [x0, ..., xn] par rapport à
l’algorithme pyramidal. Conclure.

Exercise 6. [Extension de la notion de différence divisée]
On considère une fonction numérique f de la variable réelle définie

sur l’intervalle I = [A,B] de R. Soit a,b, c trois points distincts de I.

1. On définit la fonction F par F(x)= f [a, x].
(a) Déterminer le domaine de définition de F. Trouver une

hypothèse (H1) portant sur f suffisante pour que F soit
prolongeable par continuité en a.

(b) Sous (H1), calculer la limite de F en a ; inventer une nota-
tion pour représenter cette limite.

(c) Quelle proposition vient-on d’établir concernant les diffé-
rences divisées ? En déduire que l’on vient de donner un
sens à une différence divisée dont les arguments ne sont
pas distincts.
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TD 1 : Interpolation

2. On définit la fonction G par G(x)= f [a, x, c].

(a) Déterminer le domaine de définition de G.

(b) Trouver une hypothèse (H2) portant sur f suffisante pour
que G soit prolongeable par continuité en a et c.

(c) Sous (H2), calculer les limites de G en a et c ; inventer une
notation pour représenter ces limites.

(d) Vérifier que le sens donné aux nouvelles notations res-
pecte la propriété fondamentale permettant le calcul des
«différences divisées classiques».

3. Sous (H2) , on considère la fonction H définie par H(x)= f [a,a, x].
Adapter les questions de la question antérieure pour généraliser
la démarche proposée.

4. Que conjecturer pour prolonger les questions antérieures ?

5. En utilisant ces nouvelles notations comment pouvez-vous écrire
le polynôme osculatoire de degré n en x0 à f (vous ferez les
hypothèses nécessaires sur f ) en termes de différences divisées
?

6. Quelle généralisation de la théorie des polynômes d’interpola-
tion proposeriez-vous?

Exercise 7. Soit f : [a,b]→R une fonction continue que l’on souhaite
interpoler.

1. Rappeler les formules vues en cours pour le calcul de l’erreur.

2. En faisant des hypothèses supplémentaires de régularité sur
f déterminer une majoration du nombre de points de support
nécessaires pour que l’erreur d’interpolation en tout point x ∈
[a,b] soit inférieure à ε, où ε est un réel strictement positif.

Exercise 8. Soient n ∈N∗ et f une fonction de R dans R de classe C3

sur l’intervalle I = [a,b]. Pour tout i appartenant à {0, ...,n}, on pose
xi = a+ ih où h = (b−a)/n.

1. Soient i ∈ {0, ...,n−1} et pi,1 le polynôme d’interpolation de degré
un de f en xi et xi+1

Exprimer l’erreur d’interpolation e i,1(x)= f (x)− pi,1(x) pour un
élément x de [xi, xi+1] et majorer sa valeur absolue indépendam-
ment de i.

2. On considère une table à pas constant h1 et on interpole linéai-
rement f entre les nœuds. Soit ε > 0. Déduire de la question
précédente une majoration du pas h1 garantissant une précision
inférieure à ε.

3. Soient n ≥ 2, i ∈ {0, ...,n−2} et pi,2 le polynôme d’interpolation
de degré deux de f en xi, xi+1 et xi+2

Exprimer l’erreur d’interpolation e i,2(x)= f (x)− pi,2(x) pour un
élément x de [xi, xi+2] et majorer sa valeur absolue indépendam-
ment de i.

4. On considère une table à pas constant h2 et on interpole de
façon quadratique f entre les nœuds. Soit ε> 0. Déduire de la
question précédente une majoration du pas h2 garantissant une
précision inférieure à ε.

5. Application numérique : on donne ε ∈ {10−2,10−4}, a = 1, b = 3
et f (x)=p

x. Calculer h1 et h2. Même calcul pour f (x)= ex.
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TD 2 : Courbes de Bézier

Objectifs du TD :

• Savoir tracer une courbe de Bézier à partir du polygone de
contrôle.

• Comprendre les liens entre les propriétés des polynômes de
Berstein, les propriétés géométriques de la courbe et le polygone
de contrôle.

• Comprendre l’algorithme de de Casteljau.

Exercise 1. — Calculer les polynômes de Bernstein de degré 5.
— Montrer que les polynômes de Berstein Bn

i forment une base
pour l’espace vectoriel Pn.

Exercise 2. On considère dans le plan rapporté au repère (0,~i,~j)
le polygone de contrôle suivant : P = (P0,P1,P2,P3,P4) avec P0 =
(4,4),P1 = (0,−10),P2 = (0,14),P3 = (4,0).

1. Calculer avec l’algorithme de de Casteljau les coordonées du
point de la courbe de Bézier associée pour t = 1/2.

2. Établir les équations paramétriques de la courbe de Bézier défi-
nie par P.

3. Faire l’étude de la courbe et la tracer.

4. Vérifier sur l’exemple que la tangente au temps t = 0 correspond
à la droite (P0P1) et la tangente en t = 1 à la droite (P2P3).
Généraliser.

Exercise 3. Étudier et tracer la courbe de Bézier de points de contrôle
P0(0,0),P1(−5,10),P2(5,10), P3(0,0). Déterminer l’image de cette courbe
par une similitude de centre (0,0) d’angle π

2 et de rapport 1
2 ?

Exercise 4. On rappelle qu’une courbe paramétrée γ admet un point
cusp pour le paramètre t0 lorsque γ′(t0)= 0,γ′′(t0) 6= 0 et γ′′′(t0) 6= 0.

1. Montrer que si γ est une courbe de Bézier cubique, alors γ′ est
une parabole passant par (0,0) en t0.

2. Construire une telle parabole et en déduire un polygone de
contrôle qui produit une courbe de Bézier cubique avec un point
cusp.

Exercise 5. 1. Déterminer la complexité de l’algorithme de De
Casteljau pour évaluer γ(t0).

2. Comparer ce résultat à lévalutation de γ(t0) en utilisant le
schéma de Horner. Quel peut-être l’intérêt(s) de l’algorithme de
De Casteljau ?

Exercise 6. [médian 2009]
1. On considère g la courbe de Bézier cubique de polygone de

contrôle Q = (Q0,Q1,Q2,Q3) où Q0 = (−1,−1),Q1 = (2,a),Q2 =
(−2,a),Q3 = (1,−1).

(a) Établir les équations paramétriques de la courbe g.
(b) Étudier les variations de g
(c) Montrer que pour a = 4

3 la courbe admet un point double
en (0,0) (i.e. il existe t1 6= t2 tels que g(t1) = g(t2) = (0,0)).
On calculera pour cela les valeurs exactes t1 et t2.

(d) Tracer précisement la courbe g pour a = 4
3 .

2. On souhaite construire une courbe de Bézier γ de degré 4 pos-
sédant deux points de rebroussement (point cusp). On rappelle
qu’une condition suffisante pour avoir un tel point en t0 est
γ′(t0)=−→

0 et γ′′(t0) 6= −→
0 .

(a) Rappeler comment on associe à γ la courbe de Bézier g de
degré 3 correspondant à γ′ (à une homothetie près).

(b) Si on suppose que γ admet deux points cusp que peut-on
dire de g ?

(c) Construire le polygone de contrôle P = (P0,P1,P2,P3,P4)
de γ.

(d) Sans calculer les équations de la courbe γ positionner les
points cusps de γ et esquisser la courbe à partir du polygone
de contrôle (on prendra une échelle suffisament grande, 1
unité=5cm, on pourra prendre comme valeur approchée
de t1 et t2, t1 ≈ 1

5 et t2 ≈ 4
5 enfin on laissera les traits de

construction apparents).
3. Peut-on construire une courbe de Bézier de degré 4 avec plus de

deux points cusps ?
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Objectifs du TD :

• Comprendre la définition et savoir calculer les fonctions B-
splines.

• Comprendre la définition d’une courbe B-spline et comment les
propriétés de ces courbes se traduisent géométriquement.

• Mettre en perspective les courbes de Bézier et les courbes B-
splines.

Exercise 1. Soit le vecteur noeud suivant τ= (0,1,2,3,4).

1. (a) Déterminer les fonctions B-spline Bi,2.

(b) Étudier et représenter graphiquement ces fonctions.

(c) Vérifier sur cet exemple les propriétés de fonctions B-
splines.

2. Même question pour le noeud τ= (0,1,2,2,3,4) et les fonctions
Bi,2.

Exercise 2. On considère k ∈N et on pose [a,b]= [0,1]. On considère
alors les B-splines, Bi,k définie pour les noeuds t0 = t1 = ·· · = tk = 0 et
tk+1 = tk+2 = ·· · = t2k+1 = 1.

1. Fournir la relation de récurrence liant Bi,k à Bi,k−1 et Bi+1,k−1
et montrer qu’on retrouve ainsi les polynômes de Bernstein.

2. Énoncer les propriétés vérfiées par les B-splines et retrouver
ainsi les propriétés des polynômes de Bernstein.

Exercise 3. Montrer la propriété dîte de partition de l’unité des B-
splines.

Exercise 4. Le but de l’exercice est de montrer que les courbes B-
splines de degré 2 définie par un polygone de contrôle P = (P0, . . . ,Pn)
et un vecteur noeud t0 = t1 = t2 < t3 < ·· · < tn−1 < tn = tn+1 = tn+2, sont
tangentes aux côtés du polygone de contrôle.

1. Montrer que γ2(ti+1) est dans l’enveloppe convexe formée par
Pi−1 et Pi.

2. Calculer γ′2(ti+1). Conclure.

Exercise 5. [Final 2009] On considère le polygône de contrôle P =
(P0,P1,P2,P3) avec P0 = (0,1), P1 = (2,3), P2 = (4,1) et P4 = (6,3) et un
vecteur noeud τ = (t0, . . . , t6) tel que 0 ≤ t0 ≤ t1 ≤ t2 ≤ ·· · ≤ t6 ≤ 1. On
notera γ2 la courbe B-splines de degré deux associée au vecteur noeud
τ et au polygone de contrôle P.

1. Combien de fonctions B-splines de degré 2 génère-t-on avec le
vecteur noeud τ ?

2. Proposer un choix de noeuds possibles pour que γ2 soit vissée
aux extrémités.

3. Soit t ∈ [t3, t4[.

(a) Évaluer γ2(t) en utilisant l’algorithme de Cox-De Boor et
obtenir une expression en fonction des coeffcientsω3,1(t),ω3,2(t),ω2,2(t)
et des points P1,P2,P3 (on pourra présenter les calculs en
mettant en évidence l’aspect triangulaire de l’algorithme).

(b) En déduire que si t = t3 alors γ2(t3) = (1−ω2,2(t3))P1 +
ω2,2(t)P2.

(c) Montrer alors que γ2(t3) est le milieu du segment [P1,P2]
si et seulement si t3 est le milieu de [t2, t4].

4. En utilisant ce qui précède et les propriétés de tangence des
courbes B-splines de degré 2, tracer la courbe t → γ2(t) sur
l’intervalle [0,1] pour le noeud τ= (0,0,0, 1

2 ,1,1,1).

5. On considère maintenant un polygone de contrôle à n+1 points,
P= (P0, . . . ,Pn). Comment doit-on choisir le vecteur noeud pour
que la courbe B-splines de degré 2 soit vissée aux extrémités et
passe par les points milieux des côtés du polygone de contrôle
[Pi,Pi+1] pour i = 1, . . . ,n−2 ?

6. Interpolation : on souhaite construire une courbe B-spline de
degré 2 vissée aux extrémités qui interpole une famille de n
points {(xi, yi),0≤ i ≤ n−1}. On choisira comme noeuds t0 = t1 =
t2 = 0, t3 = 1

n−1 , t4 = 2
n−1 , . . . , tn = n−2

n−1 , tn+1 = tn+2 = tn+3 = 1

(a) Montrer que nous n’avons pas de choix pour les points de
contrôle P0 et Pn.

(b) On suppose P1 choisi. Comment faut-il choisir P2 ?
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(c) Conclure qu’il existe une courbe B-spline de degré deux
qui interpole les points (xi, yi) ? Quels choix a-t-on pour les
tangentes aux extrémités ? Comparer avec le résultat vu
en cours sur les interpolations par B-splines de degré 3.

(d) Application : construire un polygone de contrôle et un vec-
teur noeud qui génère une courbe B-splines de degré 2
passant par les points

{(1,0), (2,3), (4,1), (3,−1), (2,0)}

Tracer la courbe et son polygone de contrôle.
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Objectifs du TD :

• Savoir mettre en place une formule de quadrature pour l’inté-
gration numérique par les méthodes classiques (comprendre le
lien avec l’interpolation).

• Se poser la question de l’erreur.

• Comprendre la différence de qualité entre ces méthodes.

Exercise 1. 1. Appliquer la méthode de votre choix pour fournir
une approximation numérique de

I =
∫ 2

0

p
xdx (1)

2. Déterminer une borne supérieure théorique pour l’erreur com-
mise.

3. Comparer avec la valeur exacte de I.

Exercise 2. Soit f une fonction numérique de classe C4 sur [a,b]. On
considère un pas constant d’intégration h pour f sur [a,b] et on note
x0, x1, ..., xN la suite associée à la subdivision de [a,b]. On se propose
de calculer, à ε près (ε ∈R∗+s), l’intégrale

I =
∫ b

a
f (x)dx

1. Déterminer le pas maximal hmax autorisé en méthode des rec-
tangles, du point milieu, des trapèzes et de Simpson pour que
la valeur absolue de l’erreur d’intégration commise soit majorée
par ε.
En déduire le nombre de sous-intervalles à considérer pour
chacune des méthodes citées, afin d’évaluer I.

2. Application numérique : on donne

f (x)= ex et g(x)=p
x,a = 1, b = 3, ε= 10−4.

Interpréter les résultats obtenus.

3. Fournir un algorithme integ( f ,a,b,ε→ val) qui fourni à partir
de la donnée de f ,a,b une valeur approchée de

∫ b
a f (x)dx à ε

près.

Exercise 3. On se propose de calculer numériquement avec précision
de ε (ε> 0) une valeur approchée de I = ∫ +∞

0 e−x2
dx.

1. Montrer que la fonction f à intégrer est C 4 et de dérivée qua-
trième bornée sur [0,+∞[.

2. En majorant f par des fonctions d’intégrales exprimables par
des primitives, montrer que l’intégrale considérée est conver-
gente et en déduire un réel A > 0 tel que

∫ +∞
A e−x2

dx < ε
2 .

3. Déterminer le pas constant h permettant par la méthode de
Simpson, de fournir une valeur approchée de l’intégrale

∫ A
0 e−x2

dx
à ε

2 près.
4. Bilan ?

Exercise 4. Déterminer les fonctions polynômes pour lesquelles la
relation de Simpson fournit une valeur exacte de l’intégrale.

Exercise 5. Construire sa proppre méhode d’intégration. Les rêgles
d’intégration vues en cours étaient toutes construites à partir d’une
interpolation sur des supports de points distincts. Que se passe-t-il
si on considère des méthodes de quadratures construites à partir de
support de points non disctincts ?

On considère f ∈C 2([a,b]) et on veut estimer

I =
∫ b

a
f (x)dx (2)

1. Donner l’expression théorique du polynôme d’interpolation p1
de f pour le support {a,a}.

2. Déterminer une formule d’intégration.
3. Expliquer à partir d’un dessin l’indée de la méthode.
4. Montrer que l’erreur de méthode s’exprime sous la forme :

E = (b−a)3

6
f ′′(ζ) avec ζ ∈]a,b[ (3)

5. Proposer une formule d’intégration pour une verion composéee
de la méthode et déterminer la formule de l’erreur correspon-
dante.
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TD : Rappel produit scalaire

1 Définitions

Definition 1. Soit E un R-espace vectoriel. Un produit scalaire <,>:
E×E →R est une application bilinéaire, symétrique et définie positive.

Definition 2. Soit E un R-espace vectoriel muni d’un produit scalaire.
On définit la norme euclidienne (ou norme associée au produit scalaire)
d’un vecteur v ∈ E par :

||v|| =p< v,v >.

Remark 1. On peut définir différents types de norme sur un même
espace. En particulier il n’est pas nécessaire d’avoir un produit scalaire
pour définir une norme.

Exercise 1. On rappelle que sur R3 le produit scalaire de deux vec-

teurs −→u =
 x1

y1
y2

 et −→v =
 x2

y2
z2

 est défini par

−→u .−→v = x1x2 + y1 y2 + z1z2.

1. Vérifier rapidemment qu’il s’agit bien d’un produit scalaire.

2. La base {

 1
2
0

 ,

 1
0
1

 ,

 0
1
2

} est-elle orthonormée ?

Proposition 1. Sur P , le crochet <,> défini par

< u,v >=
∫ 1

−1
u(x)v(x)dx∀(u,v) ∈P 2

est un produit scalaire.

Exercise 2. Prouver la proposition 1. Montrer que {x,1+ x2} sont
orthongonaux pour <,>. Calculer la norme de ces deux vecteurs.

Exercise 3. On rappelle que Pn représente l’ensemble des polynômes
de degré inférieur ou égal à n. Déterminer les vecteurs p1 de P1 ortho-
gonaux à p0 = 1. Puis le sous-espace des vecteurs de P2 orthogonaux

à p0 et p1.

2 Procédé de Gram-Schmidt

Étant donné E, espace vectoriel muni d’un produit scalaire, peut-
on construire une base orthogonale ?

Soient u et v deux vecteurs non nuls de E, la projection de u sur v
est donnée par

pro j(u)v = < u,v >
< v,v > v

Si u et v sont libres on construit deux vecteurs orthogonaux de la
manière suivante :

v1 = v et v2 = u− pro jv1(u). (faire un dessin !)

Ce procédé se généralise à n vecteurs libres. On choisit un vecteur
v1 puis on construit v2 par soustraction de la compostante du second
vecteur sur v1. Une fois v2 construit on choisit un troisième vecteur
qu’on «orthogonalise» en enlevant les composantes sur v1 et v2, etc...

Soit {u1, . . . ,un} une famille libre de E,

v1 = u1
v2 = u2 − pro jv1(u2)

v3 = u3 − pro jv1(u3)− pro jv2(u3)0
...

vn = un −∑n−1
i=1 pro jvi (un)

Exercise 4. Construire «à la main» les quatre premiers vecteurs d’une
famille de polynômes (L i)i∈N tels que :

1. deg(L i)= i.

2. L i(1)= 1.

3. < L i,L j >= 0 pour i 6= j.

On partira de la base canonique que l’on «redressera».
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(x
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W
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∫ Π
n j=

0,
j6=

i
x−

x j
x i

−x
jω

(x
)d

x
TD 5 : Intégration gaussienne

Objectifs du TD :

• Savoir mettre en place une méthode d’intégration gaussienne.

• Comprendre la notion de méthode d’ordre optimal.

• Comprendre comment se construit l’intégration Gaussienne.

Exercise 1. [Vers l’intégration de Legendre]
On considère une fonction f , continue sur [−1,1] et on pose

I( f )=
∫ 1

−1
f (x)dx.

On étudie dans cet exercice la formule de quadrature à deux points :

K( f )=W0 f (x0)+W1 f (x1) , (1)

où x0 et x1 sont deux réels distincts de ]−1,1[ et W0 et W1 sont deux
réels quelconques.

1. En remarquant que le polynôme ψ1 = (X − x0)(X − x1) n’est pas
de signe constant, on impose, comme dans le cours, la condition∫ 1

−1
(x− x0)(x− x1)dx = 0. (2)

(a) Quelle condition sur x0 et x1 fournit cette égalité ? Permet-
elle de déterminer complètement x0 et x1 ? Les réels x0 =
−1/2 et x1 = 2/3 vérifient-ils (2) ?

(b) Sur le support {x0, x1}, on interpole f par un polynôme de
degré un et on considère K( f ) défini par (1). Pour f élément
de P3, calculer I( f )−K( f ). En déduire que I( f )−K( f ) est
nul si et seulement si f appartient à P2.

2. On impose , comme dans le cours, la condition supplémentaire∫ 1

−1
(x− x0)2(x− x1)dx = 0. (3)

(a) Quelle condition supplémentaire sur x0 et x1 fournit cette
égalité ? Déterminer alors x0 et x1.

(b) Vérifier que I( f )−K( f ) est nul si f appartient à P3.

3. Peut-on espérer élever encore le degré des polynômes pour les-
quels la formule de quadrature (1) donne la valeur exacte de
l’intégrale ?

Exercise 2.

1. En utilisant les tables numériques (voir compléments en ligne),
évaluer numériquement l’intégrale

I =
∫ 1

−1

dx
1+ x2 ,

par la méthode de Gauss-Legendre à n + 1 points avec n ∈
{0, ...,5}.

2. Calculer la valeur exacte de I.

3. Comparer avec les valeurs approchées. Conclure.

Exercise 3. On considère l’intégrale I = ∫ 1
−1

x4p
1−x2 dx

1. Calculer I. (on pourra utiliser le résultat suivant cos(x)4 =
1
8 cos(4x)+ 1

2 cos(2x)+ 3
8 , connaissez-vous un moyen de retouver

ce résultat ?)

2. Intégrer I numériquement par la méthode de Tchebychev sur
un support à trois points.

3. Comparer le résultat avec votre calcul de la question 1. Expli-
quer.

4. De combien de points a-t-on besoin pour évaluer de manière
exacte

∫ 1
−1

x2np
1−x2 dx ?

Exercise 4. Soit f une fonction continue sur [−1,1], on pose

I( f )=
∫ 1

−1
f (x)dx

On considère une méthode d’intégration numérique à n+1 points :

Inum( f )=W0 f (x0)+W1 f (x1)+·· ·+Wn f (xn)

où x0, . . . , xn sont n+1 réels de ]−1,1[ et W0, . . . ,Wn sont les poids
associés (on rappelle que les poids Wi sont calculés par Wi =

∫ 1
−1 l i(x)dx
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TD 5 : Intégration gaussienne

où l i est le i-ème polynôme de Lagrange).

On notera Pk l’ensemble des polynômes réels de degré inférieur
ou égal à k.

On dira qu’une méthode d’intégration numérique est d’ordre k si
elle est exacte pour tous les polynômes de degré inférieur ou égal à k
c’est à dire

∀P ∈Pk, I(P)= Inum(P)

1. Dans cette question on montre que l’ordre de la méthode est
inférieur ou égal à 2n+1 :

(a) Soit P = (x−x0)(x−x1) . . . (x−xn). Montrer que Inum(P2)= 0.
En déduire que I(P2) 6= Inum(P2).

(b) Conclure qu’il n’existe pas de méthode numérique à n+1
points d’ordre 2n+2.

2. Dans cette question on montre que la méthode est d’ordre n :
(a) Soit P un polynôme de degré n. Rappeler son écriture dans

la base de Lagrange pour le support {x0, . . . , xn} (on pourra
noter l i le i-ème polynôme de Lagrange).

(b) Montrer que I(P)= Inum(P). Conclure que la méthode est
d’ordre n.

3. Dans cette question on suppose que x0, . . . , xn sont les racines du
n+1-ème polynôme de Legendre Ln+1. Soit P ∈P2n+1, on écrit
la division euclidienne de P par Ln+1 : il existe deux polynômes
Q et R tels que P(x)=Q(x)Ln+1(x)+R(x) avec deg(R)< n+1.

(a) Montrer que Inum(P)= Inum(R).

(b) Quel est le degré maximum de Q ? Utiliser une propriété
des polynômes de Legendre pour montrer (sans calculs) que∫ 1
−1 Q(x)Ln+1(x)dx = 0. En déduire

∫ 1
−1 P(x)dx = ∫ 1

−1 R(x)dx.

(c) Pourquoi a-t-on I(R)= Inum(R) ?

(d) Conclure que la méthode est d’ordre 2n + 1, i.e I(P) =
Inum(P) pour tout P ∈P2n+1.

4. Réciproquement, montrer que si la méthode est d’ordre 2n+1
alors les noeuds x0, . . . , xn sont les racines du n+1-ème polynôme
de Legendre.

Exercise 5. Intégration de Gauss-Martin]
Dans cet exercice on se propose de créer une méthode d’intégration

originale.
Soit f une fonction C ∞ sur [0,1], on cherche à évaluer de manière

optimale : ∫ 1

0
f (x) (− ln(x))︸ ︷︷ ︸

ω(x)

dx (4)

Pour éviter les déboires calculatoires on donne le résultat sui-
vant valable pour tout α≥ 0 (utilisable quand vous le souhaitez dans
l’exercice) : ∫ 1

0
xα(− ln(x))dx = 1

(α+1)2 (5)

On considère sur l’espace vectoriel des fonctions polynômes P le
crochet suivant

〈,〉 : P ×P → R

(p, q) 7→ 〈p, q〉 =
∫ 1

0
p(x)q(x)(− ln(x))dx

(6)

1. Montrer que 〈,〉 définit un produit scalaire sur P .

2. Montrer que pour tout p, q ∈N on a 〈xp, xq〉 = 1
(p+ q+1)2 .

3. On considère le polynôme M2 de degré 2 donné par M2(x) =
x2 − 5

7
x+ 17

252
.

(a) Vérifier que 〈M2,1〉 = 0 et 〈M2, x〉 = 0.

(b) En déduire que M2 ⊥P1 (c’est-à-dire M2 est orthogonal à
tout polynôme de degré inférieur ou égal à 1).

4. Expliquer pourquoi si on souhaite construire une méthode à
deux points pour évaluer numériquement (4), il serait judicieux
de considérer le support

{x0 = 5
14

−
p

106
42

, x1 = 5
14

+
p

106
42

} (7)

Comment doit-on alors calculer W0 et W1 (on ne demande pas
de faire le calcul explicite) ?
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