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Introduction

Depuis l'émergence de cette nouvelle discipline que l'on appelle physique quan-
tique, la communauté scienti�que n'a cessé de consacrer une partie de ses e�orts
à comprendre, investiguer, observer, théoriser, modéliser et implémenter les idées
liées à ce domaine d'étude.

De cet e�ort, et par analogie à la théorie de l'information, est née au fur et à
mesure la théorie de l'information quantique, base de ce que l'on appelle parfois
informatique quantique. Jusqu'ici, nous n�avons, en tant qu'étudiants, approché
cette science que du point de vue mathématique et quelques peu physique, mais
en tant que personnes extérieures à cette science. Dans ce projet, nous tentons de
nous placer du côté de cette théorie de l'information quantique pour obsever le
"monde" extérieur de la science, et plus particulièrement celui de l'énergie.

Nous vous présentons alors notre travail e�ectué dans le cadre de l'Unité de
Valeur TO52 pour Hamza JAFFALI, et TX54 pour Ismaël NOUNOUH, sous la
forme de ce rapport divisé en deux parties. Dans la première partie, nous nous
intéressons à la partie théorique, en présentant tout d'abord les principaux proto-
coles de communication quantique, et dans un second temps un état de l'art des
jeux quantiques existants dans la littérature. Dans la seconde partie, nous tente-
rons d'entrapercevoir le futur de la gestion d'énergie à travers les Smart Grid et
l'information quantique notamment, et nous tenterons de proposer des scénarios
d'application des jeux quantiques à une problématique d'allocation de ressources
et de gestion de la production. Nous terminerons ce rapport par un bilan person-
nel, une synthèse ainsi qu'une ouverture sur d'éventuelles pistes à envisager pour
la suite.
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Chapitre 1

Communication quantique

Cette section a pour principal but d'apporter quelques notions élémentaires
concernant la théorie de l'information quantique. Pour ce faire, nous dé�nirons,
tout d'abord, les principales di�érences qui résident entre l'informatique classique
et quantique. Nous présenterons par la suite un certain nombre de protocoles
quantiques célèbres. Pour plus d'approfondissement, vous pouvez consulter notre
rapport consacré aux bases de la théorie de l'information quantique [11].

1.1 Bases de la théorie de l'information quantique

Comme chacun d'entre nous le sait, en informatique classique, l'information
la plus simple transmise par un ordinateur est le bit (Bynary digit). Ce dernier
correspond à la quantité minimale d'information d'un message et est l'unité de
mesure de base en informatique. Celui-ci ne peut valoir que 0 ou 1. La manipulation
des bits s'e�ectue par nos ordinateurs au moyen de processus physiques simples et
véhiculants des informations binaires : vrai/faux, on/o�, 0/1,...etc.

Cependant, la théorie de l'information quantique introduit un nouveau "concept".
En e�et, le bit classique va être remplacé par un bit quantique (nommé qubit).
L'information porté par cette entité pourrait correspondre à la polarisation d'un
photon ou encore à l'orientation du spin d'un électron. Le qubit représente un sys-
tème quantique à 2 états de base : |0〉 et |1〉. Pour distinguer les états quantiques
des états classiques, une convention a été introduite dans les années 1930 par le
physicien Paul Dirac 1.

1. 1902-1984 Il est considéré comme l'un des "pères" de la mécanique quantique et il a aussi
prévu l'existence de l'antimatière.
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Pour un qubit |ψ〉, on notera :

|ψ〉 = α|0〉+ β|1〉

α et β étant des nombres complexe, α, β ∈ C. Ainsi |α|2 et |β|2 correspondent,
respectivement, aux probabilités pour |ψ〉 de se trouver dans les états |0〉 ou |1〉
avant d'avoir été mesurés. De plus, |α|2 + |β|2 = 1.

De fait, la principale di�érence avec un bit classique est que le qubit à la
capacité de se trouver dans une in�nité d'états entre |0〉 et |1〉.

1.1.1 Postulats quantiques

Pour plus de clarté, nous allons exposer les 3 postulats principaux de l'infor-
matique quantique, à savoir :

� Postulat de l'état d'un système : Les états d'un système quantique sont
des éléments d'un espace vectoriel aussi appelé espace de Hilbert noté H.
Les états du sytème quantique d'un qubit sont les éléments d'un espace à
deux dimensions, engendrés par les états de base |0〉 et |1〉. Notre espace est
ici �ni, il est donc plus simple d'utiliser une repésentation matricielle :

|0〉 →
(

1
0

)
; |1〉 →

(
0
1

)
et ainsi :

|ψ〉 = α|0〉+ β|1〉 →
(
α
β

)
De plus, la norme d'un vecteur peut être dé�ni par :

||ψ|| =
√
〈ψ|ψ〉 =

√
α2 + β2

Avec 〈ψ|ψ〉 =
(
α β

)(α
β

)
� Postulat de la mesure : Le point important à retenir est qu'e�ectuer une

mesure transforme le qubit. Si nous avons un état |ψ〉 = α|0〉 + β|1〉 et
que l'on e�ectue une mesure sur celui-ci alors dans ce cas |ψ〉=|0〉 ou |1〉,
autrement dit le qubit |ψ〉 a été projetté dans la base {|0〉,|1〉}. Imaginons
que la mesure nous donne le résultat |0〉 et bien il est maintenant impossible
d'e�ectuer la moindre opération sur l'état |ψ〉 car la mesure a modi�é notre
état et l'a transformé en |ψ〉 = |0〉. Il est alors impossible de retirer des
informations supplémentaires sur ce qubit.
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� Postulat de l'évolution : L'évolution d'un système quantique fermé, c'est à
dire sans interaction extérieure, est décrit par une transformation unitaire.
Cette évolution de l'état provient de l'application d'un opérateur linéaire,
nommé l'opérateur d'évolution, qui est un opérateur unitaire (préservant la
norme). Prenons un état |ψ〉 d'un système quelconque au temps t1, et bien
cet état est lié à l'état |ψ′〉 du système au temps t2 par l'opérateur d'évolution
U qui dépend seulement du temps entre t1 et t2.

|ψ′〉 = U |ψ〉

1.1.2 Exemples d'opérations sur les qubits

La manipulation de qubits se fait à l'aide d'opérateur unitaires, en tant qu'opé-
rateurs d'évolution, pouvant être représentés par leur matrice unitaire, qui est une
généralisation des matrices orthogonales aux complexes. Nous présentons alors ci-
dessous les principales matrices unitaires permettant de manipuler les qubits. Ces
portes seront réutilisées tout au long du rapport.

Porte quantique X ou NON (NOT) : La matrice de l'application NOT dans
la base |0〉, |1〉 est :

X =

(
0 1
1 0

)
Cette matrice permet d'e�ectuer les tranformations suivantes :

X|0〉 = |1〉 et X|1〉 = |0〉

Porte quantique Y : La porte Y est dé�nie par la matrice : Y =

(
0 −i
i 0

)
dont

la table de vérité est :
|0〉 → i|1〉
|1〉 → −i|0〉

Porte quantique Z : La porte Z est dé�nie par la matrice : Z =

(
1 0
0 −1

)
ou

opérateur de flip dont la table de vérité est :

|0〉 → |0〉
|1〉 → −|1〉

12



Porte quantique de Hadmard ou H : La porte de Hadamard est dé�nie par

la matrice : H = 1√
2
(X + Z) = 1√

2

(
1 1
1 −1

)
dont la table de vérité est :

|0〉 → 1√
2
(|0〉+ |1〉)

|1〉 → 1√
2
(|0〉 − |1〉)

Porte quantique Uθ : La porte Uθ est dé�nie par la matrice : Uθ =

(
cos θ − sin θ
sin θ cos θ

)
, rotation d'angle θ, dont la table de vérité est :

|0〉 → cos(θ)|0〉+ sin(θ)|1〉
|1〉 → cos(θ)|1〉 − sin(θ)|0〉

1.2 Téléportation quantique

Nous allons voir, dans cette partie, un exemple d'application possible en utili-
sant les concepts de la théorie de l'information quantique.

1.2.1 Formulation du problème

Un agent secret (ou pas) remet à Anne une enveloppe (ici, le qubit) qui contient
un message (l'état du qubit) très important destiné à un autre agent, Benoît situé
à quelques kilomètres de là (mais cela pourrait être des milliards de kilomètres).
L'agent demande à Anne de ne pas prendre connaissance du message (état inconnu
du qubit) et, n'ayant pas con�ance dans les services postaux, de ne pas envoyer
l'enveloppe à Benoît (c'est-à-dire ici, de ne pas envoyer le qubit en lui même,
mais seulement l'information qu'il contient). Dans ces conditions comment Anne
parviendra-t-elle à transmettre le message à Benoît ?

Remarque 1.2.1. Nous pouvons remarquer que la notion de téléportation abordée
ici est un transfert d'information et non pas de matière.

1.2.2 Circuit quantique

1.2.3 Protocole quantique

Dans tout ce protocole, nous supposons qu'Anne et Benoît se sont rencontrés
précédemment et se sont partagé à l'amiable un système à deux qubits intriqué,
plus exactement l'état de Bell (qui nous le rappelons est dé�ni par |ψBell〉= 1√

2
(|00〉+

|11〉)). De plus, Anne détient un deuxième qubit dont l'état lui est inconnu |ψA1〉 =
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Anne : A1 |ψ〉 • H
b1
•

Anne : A2 Premier qubit de |β00〉
b2
•

Benoit : B Second qubit de |β00〉 Xb2 Zb1 |ψ〉 Benoit

↑ ↑ ↑ ↑ ↑
|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉

Figure 1.1 � Circuit de téléportation

α|0〉+ β|1〉, qui par ailleurs veut être transmis à Benoît (nous parlons bien, ici, de
l'état du qubit). Nous obtenons donc un système à 3 qubits dont l'état est décrit
par :

|ψ0〉 = |ψBell〉 ⊗ |ψA1〉 =
1√
2

(α|0〉+ β|1〉︸ ︷︷ ︸
|A1〉

)(|00〉+ |11〉︸ ︷︷ ︸
|A2B〉

)

=
1√
2
{α(|000〉+ |011〉) + β(|100〉+ |111〉)} avec |...〉︸︷︷︸

|A1A2B〉

1. La première étape de la téléportation consiste à appliquer la porte C-Not sur
le système à 2 qubits constitué par la paire des qubits que détient Anne :
A1 et A2. Ainsi, Anne obtient :

|ψ1〉 =
1√
2
{α(|000〉+ |011〉) + β(|110〉+ |101〉)}

2. Ensuite, la deuxième étape consiste à envoyer le premier qubit d'Anne, noté
A1, sur une porte de Hadamard. De fait, l'état |ψ1〉 devient :

|ψ2〉 =
1

2
{α(|000〉+ |100〉+ |011〉+ |111〉) + β(|010〉 − |110〉+ |011〉 − |101〉)}

=
1

2
{|00〉(α|0〉+β|1〉)+|01〉(α|1〉+β|0〉)+|10〉(α|0〉−β|1〉)+|11〉(α|1〉+β|0〉)

Ici, nous pouvons voir que l'état du qubit inconnu est complétement déter-
miné par l'état du système à 2 qubits dé�ni par |A1A2〉. Ce phénomène est
dû à l'intrication quantique.

3. Anne mesure l'état du sytème |A1A2〉 et transmet le resultat de cette mesure,
appelé mesures de Bell, à Benoît par n'importe quel moyen de communication
(ex : telephone,...) : cette étape montre bien que la relativité n'est pas remise
en question dans le principe de téléportation.
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4. Benoît reçoit le résultat d'Anne noté |a1a2〉. Il e�ectue en�n l'opération
Za1Xa2 , avec "Z" et "X" les ortes logiques quantiques dé�nies précédem-
ment, sur son qubit. Le résultat de cette manipulation donnera, avec certi-
tude, l'état du qubit inconnu noté |A1〉.

1.3 Principe du Superdense coding à 2-qubits

Notre second exemple d'application de l'intrication pour la communication sera
le Superdense coding. Ce moyen de communication introduit pour la première fois
en 1992 2, permet de mettre en place un codage et une transmission des informa-
tions plus "dense� que les protocoles classiques. En e�et, le principe est le suivant :

Alice et Bob partagent initialement l'état de Bell β00 : chacun d'entre eux pos-
sède un qubit de cet état intriqué. Comment Alice peut elle transmettre deux bits
classiques d'information à Bob, en ne lui envoyant qu'un seul qubit ?

Alice voudrait donc transmettre à Bob l'un des état basiques suivant : |00〉,
|01〉, |10〉 et |11〉. Les étapes du protocole de Superdense coding sont les suivantes :

� Alice choisit les 2 bits qu'elle veut transmettre
� En fonction de ces derniers, elle agit sur son qubit appartenant à l'état de

Bell partagé
� Alice envoie son qubit de l'état de Bell après manipulation
� Bob réceptionne ce qubit, et applique alors une porte à tout le système

intriqué
� L'état de base à 2 qubits ainsi récupéré correspond aux 2 bits choisis par Anne

En fonction de l'état de base à 2 qubits choisi par Alice, la manipulation sur
le premier qubit de β00 = 1√

2
(|00〉+ |11〉) sera di�érente :

Choix de Anne Manipulation associée sur β00
|00〉 I
|01〉 X1

|10〉 Z1

|11〉 (ZX)1

Il en resulte donc la transformation suivante, en fonction de chacun des choix
de Alice.

2. C. H. Bennett and Stephen J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992)
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|00〉 : 1√
2
(|00〉+ |11〉) I−→ 1√

2
(|00〉+ |11〉) = |ω1〉

|01〉 : 1√
2
(|00〉+ |11〉) X1−→ 1√

2
(|10〉+ |01〉) = |ω2〉

|10〉 : 1√
2
(|00〉+ |11〉) Z1−→ 1√

2
(|00〉 − |11〉) = |ω3〉

|11〉 : 1√
2
(|00〉+ |11〉) (ZX)1−−−→ 1√

2
(|01〉 − |10〉) = |ω4〉

Une fois son qubit manipulé, elle l'envoie à Bob. Il possède donc désormais
l'état intriqué dans son intégralité. Il applique alors la porte inverse de la porte
génératrice des états de Bell à savoir : une porte c-NOT contrôlée par le premier
qubit, suivie d'une porte de Hadamard sur le premier qubit également.

Bob applique donc ce circuit-ci :

Qubit envoyé par Alice • H
2 bits transmits

Qubit possédé par Bob

Figure 1.2 � Circuit appliqué par Bob pour décoder

C'est à la sortie de ce circuit que l'on retrouve l'état initialement choisi pour
être transmit par Alice. Véri�ons cela pour chacun des cas de �gure :

|ω1〉
c−NOT−−−−→ 1√

2
(|00〉+ |10〉) H−→ 1

2
[ (|0〉+ |1〉)|0〉+ (|0〉 − |1〉)|0〉 ] = |00〉

|ω2〉 −−−−−→ 1√
2
(|01〉+ |11〉) −→ 1

2
[ (|0〉+ |1〉)|1〉+ (|0〉 − |1〉)|1〉 ] = |01〉

|ω3〉 −−−−−→ 1√
2
(|00〉 − |10〉) −→ 1

2
[ (|0〉+ |1〉)|0〉 − (|0〉 − |1〉)|0〉 ] = |10〉

|ω4〉 −−−−−→ 1√
2
(|01〉 − |11〉) −→ 1

2
[ (|0〉+ |1〉)|1〉 − (|0〉 − |1〉)|1〉 ] = |11〉

Ainsi, Alice peut en e�et transmettre deux bits d'information qu'elle doit avoir
préalablement choisi, en n'envoyant qu'un seul qubit au destinataire Bob. Il y a
donc un réel "gain" d'information en utilisant ce processus.

1.4 Protocole BB84

A�n d'étudier la protocole BB84 3, nous nous plaçons ici dans le cadre d'un
codage à clé privée.

L'information transmise par Alice vers Bob prendra la forme de photons, dont
la polarisation sert de support au codage de l'information. On introduit donc les

3. C. H. Bennett et G. Brassard en 1984
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états de base de polarisation d'un photon, en leur associant chacun la valeur d'un
qubit :

|→〉 ≡ |0〉
|↑〉 ≡ |1〉

Alice dispose en fait d'un emmeteur, �un par un�, de photons, muni d'un po-
lariseur lui permettant de polariser horizontalement ou verticalement ce photon,
codant ainsi le |0〉 ou le |1〉. Bennett et Brassard proposent alors d'introduire une
nouvelle base de polarisation dans laquelle les polariseurs sont inclinés de -45�par
rapport à la base précédente. Les états possibles du photons seront donc :

|↘〉 = 1√
2
(|→〉 − |↑〉) ≡ |0〉

|↗〉 = 1√
2
(|→〉+ |↑〉) ≡ |1〉

De ce fait, le qubit |1〉 pourra être codé de 2 manières di�érentes : soit par
la polarisation |↑〉, soit par la polarisation |↗〉. Pour savoir dans quelle base de
polarisation on travaille, on introduit la notation ⊕ pour la base de polarisation
horizontale/verticale, et ⊗ pour la base de polarisation à 45�.

Ainsi, un photon polarisé |↗〉 aura une probabilité de 1 d'être le résultat de la
mesure du photon dans la base ⊗, mais une probabilité de 1

2
dans la base ⊕, car

| 1√
2
|2 = 1

2
.

1.4.1 Exemple de transmission d'un seul qubit

Supposons qu'Alice veuille transmettre un qubit |0〉 en polarisant un photon
avec un polariseur orienté au hasard ⊕ ou ⊗. Ce même photon est intercepté par
un espion, que l'on nommera Eve, qui en mesure la polarisation dans la base ⊕.
On cherche à savoir qu'elle est la probabilité pour qu'il mesure bien |0〉.

Eve utilise donc la base ⊕ pour la mesure.

� Si Alice utilise la base ⊕ pour polariser son photon, alors Eve mesurera |0〉
avec une probabilité de 1.

� Si Alice utilise la base ⊗ pour polariser son photon, elle enverra donc le pho-
ton polarisé |↘〉. Comme |↘〉 = 1√

2
(|→〉 − |↑〉), le qubit a une chance sur deux

d'être projeté sur l'un des vecteurs de base de la base de mesure ⊕. Eve mesurera
alors |0〉 avec une probabilité de 1

2
.

En supposant qu'Alice ait autant de chance de choisir l'une ou l'autre des deux
bases de polarisation, c'est à dire une chance sur deux de choisir ⊕ ou ⊗, on peut
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calculer la probabilité qu'Eve mesure |0〉 sur le photon intercepté.

Soient les évènements A : �Eve mesure |0〉�, B : �Alice choisit la base ⊕� et
C : �Alice choisit la base ⊗�. Comme les évènements B et C forment un système
complet d'évènements, d'après la formule des probabilité totales, nous avons donc :

p(A) = p(A ∩B) + p(A ∩ C)

D'où d'après les formule des probabilités conditionnelles :

p(A) = p(B)× pB(A) + p(C)× pC(A)

Or on sait que p(B) = p(C) = pC(A) = 1
2
et que pB(A) = 1. On obtient alors

le résultat suivant :

p(A) =
1

2
× 1

2
+ 1× 1

2
=

3

4

L'espion Eve a donc 75% de chances de mesurer |0〉 pour un photon
codé initialement |0〉 par Alice dans une base choisie au hasard.

Introduisons maintenant, encore un fois, une nouvelle base de polarisation. Au
lieu cette fois ci de tourner la base ⊕ d'un angle de 45�, nous e�ectuerons une
rotation de cette même base ⊕ mais d'un angle θ. On dé�ni ainsi les deux vecteurs
de base, |θ〉 et |θ⊥〉 de cette nouvelle base véri�ent :

|θ〉 = cos(θ)|→〉+ sin(θ)|↑〉 ≡ |0〉
|θ⊥〉 = sin(θ)|→〉 − cos(θ)|↑〉 ≡ |1〉

Il sera utile pour la suite de relier dès à présent les vecteurs de cette nouvelle
base que l'on appellera Θ. En utilisant les relations déjà établies entre les 2 bases
⊕ et ⊗ on obtient :

|→〉 = cos(θ)|θ〉+ sin(θ)|θ⊥〉

|↑〉 = sin(θ)|θ〉 − cos(θ)|θ⊥〉

|↘〉 =
cos(θ)− sin(θ)√

2
|θ〉+

cos(θ) + sin(θ)√
2

|θ⊥〉

|↗〉 =
sin(θ) + cos(θ)√

2
|θ〉+

sin(θ)− cos(θ)√
2

|θ⊥〉

On sait qu'à présent Eve utilise donc la base Θ pour la mesure.
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� Si Alice utilise la base ⊕ pour polariser son photon, alors Eve mesurera |0〉
avec une probabilité de cos2(θ).

� Si Alice utilise la base ⊗ pour polariser son photon, alors Eve mesurera |0〉
avec une probabilité de ( cos(θ)−sin(θ)√

2
)2 = 1

2
− sin(θ) cos(θ).

En supposant qu'Alice ait toujours autant de chance de choisir l'une ou l'autre
des deux bases de polarisation ⊕ ou ⊗, on peut calculer la probabilité p(θ) qu'Eve
mesure |0〉 sur le photon intercepté :

p(θ) =
1

2
× cos2(θ) +

1

2
× (

1

2
− sin(θ) cos(θ))

On linéarise cette expression à l'aide des formules de trigonométrie usuelles :

p(θ) =
1

4
× (cos(2θ) + 1) +

1

2
× (

1

2
− 1

2
sin(2θ))

Après simpli�cation, on trouve :

p(θ) =
1

4
(2 + cos(2θ)− sin(2θ))

Il serait maintenant intéressant de chercher pour quel angle optimal θ tel que
la probabilité pour Eve de mesurer |0〉 est la plus élevée. Il su�t en e�et de trouver
pour quelle valeur de θ on atteint la maximum de la fonction p(θ). Après étude de
la fonction, on trouve que pour un angle θ = 7π

8
la fonction atteint son maximum

p(7π
8

) = 2+
√
2

4
' 85%.

L'espion Eve a donc 85% de chance au maximum de mesurer |0〉 dans
la base Θ pour un photon codé initialement |0〉 par Alice dans une base
choisie au hasard parmi ⊕ et ⊗.

Supposons maintenant qu'Alice et Bob aient leur polariseurs orientés dans la
même direction, mais que le photon, émis initialement par Alice dans l'état |0〉 soit
intercepté par l'espion Eve. Celui-ci mesure la polarisation avec un choix aléatoire
d'orientation entre ⊕ et ⊗ : quelle la probabilité qu'Eve altère l'information de
départ, c'est à dire, quelle est la probabilité que Bob reçoive le photon
dans l'état |1〉 ?

Pour répondre à cette question, dans le fond promordiale en cryptographie
quantique, il apparait important dans un premier temps de lister toutes les com-
binaisons de choix de base pour Alice, Bob et Eve :
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Alice Eve Bob
1. ⊕ ⊕ ⊕
2. ⊕ ⊗ ⊕
3. ⊗ ⊗ ⊗
4. ⊗ ⊕ ⊗

Soit l'évènement D : �Bob reçoit la photon dans l'état |1〉�. On se propose de
calculer la probabilité de l'évènement D en fonction de chaque cas de �gure �gu-
rants ci-dessus.

� Si la base utilisée par Alice et Bob et la même que celle utilisée par Eve, alors
la polarisation du photon ne sera pas altérée. Ceci se manifeste dans les cas 1 et
3, d'où :

p1(D) = p3(D) = 0

� Si la base utilisée par Alice et Bob di�ère de celle utilisée par Eve, il y a
une probabilité d'1

2
qu'Eve mesure et modi�e l'état du qubit |0〉 en |1〉, du fait de

la di�érence de base entre Alice et Eve. Ensuite, Bob a lui aussi une probabilité
d'1

2
de modi�er le qubit, du fait de la di�érence entre sa base et celle d'Eve. On

retrouve ce cas de �gure dans les cas 2 et 4, d'où :

p2(D) = p4(D) =
1

2
× 1

2
+

1

2
× 1

2
=

1

2

Au �nal, en supposant que chacun de ces 4 cas ait la même probabilité de se
réaliser, on trouve :

p(D) =
1

4
(p1(D) + p2(D) + p3(D) + p4(D))

D'où

p(D) =
1

4

Bob a donc 1 chance sur 4 de mesurer le mauvais qubit transmit,
sachant qu'un espion à antérieurement intercepté ce dernier.

1.4.2 Exemple de transmission de plusieurs qubits

On s'intéresse maintenant au cas où Alice tente de transmettre plus qu'un seul
qubit d'information à Bob. Pour transmettre plusieurs qubits à Bob on supposera
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qu'Alice les transmet un par un. De plus, pour chaque qubit, Alice choisit aléa-
toirement la base de polarisation, toujours entre ⊕ et ⊗. Alice transmet alors les
photons polarisés en fonction du message binaire, et de la base choisie pour chaque
bit.

Lorsque Bob reçoit les photons, il procède de son côté à la même opération
qu'Alice : il choisit aléatoirement, pour chaque qubit, la base de mesure entre ⊕ et
⊗. Une fois les di�érents choix e�ectués, il communique publiquement la liste de ses
choix à Alice. Alice compare alors les deux listes de choix de bases de polarisation.

Alice transmet alors, toujours publiquement, quelles sont les positions des qu-
bits de la séquence pour lesquels la base de polarisation est la même. Pour ces
positions là, Alice et Bob auront bien les même valeurs de qubits, puisque pour
ces qubits là, ils auront utilisés le même choix de codage.

Ainsi Alice et Bob peuvent utiliser ces qubits �sûrs� pour constituer une clé
privée de codage.

La théorie étant énoncée, voyons un exemple pratique de transmission de 6
qubits entre Alice et Bob :

Alice Bits à transmettre 1 0 0 1 1 0
Choix de base ⊕ ⊗ ⊕ ⊗ ⊗ ⊕

Polarisation envoyée |↑〉 |↘〉 |→〉 |↗〉 |↗〉 |→〉
Bob Choix de base ⊕ ⊕ ⊗ ⊗ ⊕ ⊕

Polarisation mesurée |↑〉 |↑〉 |↘〉 |↗〉 |→〉 |→〉
Bits lus 1 1 0 1 0 0

Alice et Bob Bits acceptés ? X × × X × X
Message secret 1 1 0

La clé de codage secrète ainsi générée et partagée par Alice et Bob sera donc :
110. Ainsi, dans cet exemple, Alice et Bob ont engendré 3 bits. Ils peuvent en fait
engendrer autant qu'ils veulent en utilisant ce système. En moyenne, Bob devinera
le bon positionnement de la base dans 50% des cas. Alice devra donc envoyer en
moyenne 2n photons pour générer un code à n bits.

Mais, à présent, comment s'assurer que ce message n'a pas été intercepté par
un espion ?

Si un espion intercepte un photon, et que Bob a choisi la même base qu'Alice :
l'espion a donc 25% de chance de modi�er la valeur du qubit, et donc 75% de
chances de ne pas modi�er cette valeur 4.

4. voir Exemple de transmission d'un seul qubit
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On prélève alors 700 bits pour être comparés entre Alice et Bob. Attardons-
nous sur 2 questions intéressantes

Quelle est la probabilité que, si un espion mesure tous les qubits transmis, aucun
des 700 bits ne soit modi�é par cette interception ?

Pour un qubit, la probabilité que l'espion ne le modi�e pas après interception
est de 3

4
. Ainsi, si on transmet 700 qubits, la probabilité d'en modi�er aucun tout

en espionnant est de (3
4
)700 ' 3, 5.10−88.

La ligne a un taux d'erreur physique de 3%. Quel pourcentage de qubit l'espion
peut-il intercepter pour le taux d'erreurs dû à l'interception ne soit pas supérieur
au taux physique ?

S'il y a un taux d'erreur physique sur la ligne, Alice et Bob peuvent accep-
ter que 700 × 3% = 21 qubits soient mal transmis. Sachant que l'espion a 25%
(1 chance sur 4) de modi�er un qubit intercepté, si il ne veut pas créer plus de
21 erreurs, il doit se limiter à observer 21 × 4 = 84 qubits. Donc Eve ne pourra
regarder que 84

700
= 12% du message.

Ainsi, pour s'assurer que le canal de transmission n'est pas �écouté�, il su�t à
Alice et Bob de prendre un échantillon de bits acceptés par Bob et Alice, et donc
pour lesquels Alice et Bob possèdent exactement les bases de polarisation. Alice et
Bob se communiquent cet échantillon là, et ils comparent chacuns le résultat de la
transmission par rapport à la l'échantillon initial : tous les bits doivent être iden-
tiques. Une seule di�érence signe la présence d'un intrus ou d'une erreur physique
sur la ligne. L'intrusion n'est avérée que si le taux de bits qui di�èrent dans le
processus de reconnassance est supérieur au taux d'erreur physique. Si le nombre
de bits échangés est su�samment grand, le fait qu'ils soient tous indentiques cor-
respond à la quasi-certitude de n'avoir pas été écouté.

Si une erreur est détectée sur cette transmission de véri�cation, Alice et Bob
devront recommencer un nouveau processus et retester la sécurité de la ligne.

1.5 Multiplexeurs

1.5.1 Fonctionnement classique

Les multiplexeurs (ou plus connu sous le nom de MUX) font partie intégrante
des moyens de communication en électronique. Ils permettent e�ectivement de
sélectionner, sur un ensemble d'informations récoltées (en entrée du MUX), un ou
plusieurs types de données à transmettre (en sortie du MUX). Ceci est réalisé à
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l'aide notamment d'un auxiliaire de controle (par exemple un ou plusieurs bits
de contrôle dont l'état est 0 ou 1) qui permet de dé�nir les données d'entrées à
transferer en sortie du MUX. Il faut noter que cette manipulation est e�ectuée a�n
de condenser l'information pour n'obtenir plus qu'une seule voie en sortie.

Voici un exemple de MUX qui passe de 4 entrées à une seule sortie [71] :

Figure 1.3 � Exemple de MUX 4 :1

Sur cet exemple, nous pouvons constater que les portes classiques NON, ET
et OU sont utilisées. Nous avons en entrée (A,B,C,D) = (1, 1, 0, 1) et les bits de
contrôle sont à l'état (C0, C1) = (0, 1). Ceci nous permet d'obtenir l'information
détenue par le bit C en sortie. Il nous su�t de changer l'état des bits de contrôle
a�n de déterminer l'entrée à séléctionner.

1.5.2 Portes quantiques sur plusieurs qubits

Il nous paraît utile de rappeller les principales portes quantiques agissant sur 2
qubits dont la porte c-NOT, SWAP et CSAWP (plus connu sous le nom Fredkin).
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Porte c-NOT

La porte c-NOT, ou controlled NOT est souvent utilisée pour remplacer la
porte NOT. Elle fonctionne de la manière suivante :

Etat d'entrée Etat de sortie
|00〉 |00〉
|01〉 |01〉
|10〉 |11〉
|11〉 |10〉

La porte c-NOT agit en e�et sur un système à deux qubits. Le premier bit sert
de contrôle (bit de contrôle) et le second bit (bit cible) subit ou pas une négation,
en fonction de l'état du bit de contrôle. Sachant comment l'opérateur c-NOT tran-
forme les vecteurs de la base |00〉, |01〉, |10〉, |11〉, on peut alors le représenter par
une matrice, dans cette même base :

c-NOT :


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Ainsi, la valeur du bit cible est inchangée, si le bit de contrôle vaut 0 et la

valeur du bit cible est changée, si le bit de contrôle vaut 1. En fait, le bit cible
vaut à la sortie la somme, modulo 2, des deux bits d'entrée, tandis que le bit de
contrôle reste inchangé. On note alors, c-NOT : (x, y)→ (x, x⊕ y).

En plus de la notation matricielle, on peut introduire la représentation sous
forme de circuit des opérateurs :

|x〉 • |x〉
|y〉 |x⊕ y〉

Figure 1.4 � Porte c-NOT

On voit donc ici que la porte c-NOT prend en entrée deux qubits simples : |x〉
et |y〉 formant à eux deux un système à deux qubits. Le système passe donc la
porte c-NOT et cette dernière retourne le résultat attendu, à savoir : on retourne
l'identité du premier qubit d'entrée sur le premier qubit de sortie, et on retourne
une somme binaire entre les deux premiers qubits sur le second qubit de sortie.
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Porte SWAP

La porte SWAP, comme son nom l'indique, échange la place les deux qubits
passés en paramètre : SWAP : (x, y) → (y, x). La porte SWAP se compose d'une
succession de 3 portes c-NOT, avec alternance du bit de contrôle :

|x〉 • • |y〉
|y〉 • |x〉

Figure 1.5 � Porte SWAP

Porte Fredkin (CSWAP)

Cette porte est une extension de la porte SWAP. En e�et, elle permet, comme
la porte c-NOT, d'avoir un bit de contôle. Le circuit et les matrices représentant
cette porte (pour les deux cas où le qubit de contrôle vaut |0〉 ou |1〉) est dé�ni
ci-dessous [63] :

Figure 1.6 � Qubit de contrôle |1〉 (con�guration "High")

Figure 1.7 � Qubit de contrôle |0〉 (con�guration "Low")

Nous pouvons noter que cette porte peut disposer de plusieurs qubits de contrôle
(par exemple, pour 2 qubits de contôle nous disposerons de 4 con�gurations pos-
sibles).
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1.5.3 Exemple : Multiplexeur quantique 4 : 1

Pour expliquer le fonctionnement d'un multiplexeur quantique, nous avons
choisi d'étudier le cas particulier où l'on a 4 entrées et 1 sortie ( QMUX 4 : 1) avec
2 qubits de contrôle [63].

Le circuit représentant ce multiplexeur quantique est dé�ni de la manière sui-
vante :

Figure 1.8 � Circuit : Multiplexeur quantique 4 : 1

Sur celui-ci, nous avons |S〉0 et |S〉1 qui sont les qubits de contrôle, |D〉i0 et
|D〉i3 les qubits d'entrées et |D〉i0 le qubit de sortie. Ce dernier fait parti des circuits
réversibles.

Ainsi, ce type de multiplexeur quantique pourrait servir à des �ns de communi-
cation. De plus, il serait également possible de montrer que l'intrication des états
quantique pourrait être transmise.
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Chapitre 2

Jeux quantiques

La théorie de jeux est un domaine de science qui est très répendu de nos
jours, et connait des applications diverses, allant de la biologie à l'économie, en
passant par l'énergie et les mathématiques. Nous nous proposons dans ce chapitre
de présenter un certain nombre de jeux issus de la théorie des jeux quantiques.
Cette théorie quantique des jeux vise à introduire les formalismes présents en
théorie de l'information quantique a�n de développer de nouvelles stratégies et de
nouveaux jeux, dont la performance serait basée sur l'utilisation de la superposition
et de l'intrication comme facteur d'amélioration des résultats. Les jeux qui seront
réutilisés dans la seconde partie du rapport, c'est à dire ceux qui seront mis en scène
dans une application énergétique seront plus amplement détaillés, par rapport aux
autres jeux quantiques traités. La liste des jeux quantiques présentés n'est pas
exaustive, mais comprend les jeux les plus connus dans la littérature associée.

2.1 CHSH-Game

Le CHSH Game est un jeu à 2 joueurs. Son nom est tiré des CHSH Inequalities
introduites par Clauser, Horne, Shimony et Holt [3, 4]. Ceci vient tout d'abord
du paradoxe EPR introduit en 1935 par Einstein, Podolsky et Rosen. En 1964,
John Bell leur apportera une réponse en établissant sa célèbre "inégalité de Bell".
De même, la "CHSH Inequality" sera introduite pour répondre à la théorie des
variables cachées. Le CHSH Game sera alors présenté comme protocole à cette
occasion, et c'est ce protocole en tant que jeu que nous allons étudier.

2.1.1 Déroulement du jeu

Soient deux joueurs A et B, ne pouvant pas communiquer mutuellement, et R
l'arbitre du jeu. R envoie une question biniaire, 0 ou 1, à chacun des joueurs de la
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partie. On dénote par r la question envoyée à A et s la question envoyée à B. On
dénote par rs la question globale envoyée aux joueurs. On note Q l'ensemble des
questions possibles. L'arbitre posera alors la question rs ∈ Q avec :

Q = {00, 01, 10, 11}

Dans un second temps, les deux joueurs doivent donner une réponse suite à
la réception de leur question. Leur réponse est également biniaire, 0 ou 1, pour
chacun des joueurs. On dénote par a la réponse du joueur A et par b la réponse
du joueurs B. On dit que le jeu est gagné si et seulement si :

r ∨ s = a⊕ b

Le coeur du jeu est donc, pour les joueurs A et B, de trouver une stratégie qui
maximise la probabilité de gagner au CHSH game.

2.1.2 Meilleures stratégies classiques

On peut imaginer di�érentes manière à A et B de s'accorder en avance pour
répondre d'une manière précise en fonction de leur question respective. Mais cer-
taines stratégies permettent d'atteindre la probabilité maximale de gagner qui est
de 3

4
.

En e�et, aucune stratégie classique ne permet de gagner le jeu de manière sûre.
Pour le démontrer, on note respectivement a(r) et b(s) la réponse des joueurs A
et B à leurs questions respectives r et s. Résoudre totalement le jeu reviendrai à
trouver une stratégie, c'est à dire une réponse pour chacun des joueurs, en fonction
de leurs questions, qui satisfait la condition de gain. En d'autres termes, cela
reviendrai à trouver une solution aux équations suivantes :

0 ∨ 0 = 0 = a(0)⊕ b(0)

0 ∨ 1 = 1 = a(0)⊕ b(1)

1 ∨ 0 = 1 = a(1)⊕ b(0)

1 ∨ 1 = 1 = a(1)⊕ b(1)

En sommant ces équations, on en déduit la condition suivante :

a(0)⊕ a(0)⊕ a(1)⊕ a(1)⊕ b(0)⊕ b(1)⊕ b(0)⊕ b(1) = 0⊕ 1⊕ 1⊕ 1

Ceci nous amène à une absurdité (0 = 1), ce qui montre que le système d'équa-
tion n'est pas résolvable, donc que ne peut trouver de solution qui résoud le jeu
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totalement. Les scienti�ques du domaine on montré que l'on ne peut excéder une
probabilité de 3

4
en faisant varier les stratégies. Cela peut se comprendre aussi de

la manière suivante : si l'on retire une équation du système, le système devient
résolvable, et il existe plusieurs solutions.

Ainsi, une des stratégies possible pour A et B est de répondre le complément
de la question posée par l'arbitre. La stratégie se résume alors par ces équations :

a(0) = 1, a(1) = 0, b(0) = 1, b(1) = 0

Si l'on remplace ces valeurs dans le système on obtient alors :

0 = 1⊕ 1

1 = 1⊕ 0

1 = 0⊕ 1

1 = 0⊕ 0

On voit bien que 3 sur 4 équations sont correctes, et donc que l'on résoud le
jeu dans 3 des 4 cas possibles : seule la question {11} posée par l'arbitre les fera
échouer.

2.1.3 Stratégie quantique

La stratégie quantique pour résoudre le CHSH-Game est basée sur le fait que
les joueurs A et B disposent d'une préparation supplémentaire avant le début du
jeu. En e�et, les 2 joueurs vont partager un état de Bell. Chacun des joueurs
possèdera donc un qubit de l'état intriqué noté |βell〉 dé�nit par :

|βell〉 =
1√
2

(
|0A0B〉+ |1A1B〉

)
La stratégie à adopter pour le joueur A consiste donc en 2 cas :
� Si A reçoit la question {0} de la part de l'arbitre, il mesure son qubit dans
la base classique {|0〉, |1〉} (base de Z de Pauli). A envoie ensuite le résultat
de la mesure comme réponse à l'arbitre. Autrement dit, si A mesure |0〉 pour
son qubit, elle renvoie la réponse {0} à l'arbitre, et inversement.

� Si A reçoit la question {1} de la part de l'arbitre, il mesure son qubit dans
la base {|+〉, |−〉} avec |+〉 = |0〉+|1〉√

2
et |−〉 = |0〉−|1〉√

2
(base de X de Pauli,

ou base de Hadamard). Cela revient à appliquer la porte Hadamard à son
qubit, puis de le mesure dans la base classique. Si A mesure |+〉 elle répond
{0} à l'arbitre ; si il mesure |−〉 elle répond {1} à l'arbitre.
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Le joueur B quant à lui, possède une base qu'il peut roter autour de l'origine
selon un angle α qu'il choisi. Les deux vecteurs de base {|φ〉,

∣∣φ⊥〉}, vecteur ortho-
gonaux dans la sphère de Bloch, se dé�nissent alors demanière générique comme
suit :

|φ〉 = cos
(θ

2

)
|0〉+ sin

(θ
2

)
|1〉

∣∣φ⊥〉 = − sin
(θ

2

)
|0〉+ cos

(θ
2

)
|1〉

La stratégie à adopter pour le joueur alors B consiste donc en 2 cas :
� Si B reçoit la question {0} de la part de l'arbitre, il mesure son qubit dans
la base dont la direction dans la sphère de Bloch est entre celles des bases X
et Z de Pauli, ce qui correspond à un angle de π

4
. B envoie ensuite le résultat

de la mesure comme réponse à l'arbitre. Autrement dit, si A mesure |φ〉 pour
son qubit, il renvoie la réponse {0} à l'arbitre ; si il mesure

∣∣φ⊥〉 il répond
{1} à l'arbitre.

� Si B reçoit la question {1} de la part de l'arbitre, il mesure son qubit dans la
base dont la direction dans la sphère de Bloch est entre l'opposé de la direc-
tion de la base X et et la direction de la base Z de Pauli, ce qui correspond
à un angle de 3π

4
. B envoie ensuite de la même manière que précdemment le

résultat de la mesure comme réponse à l'arbitre.

En utilisant la sphère de Bloch comme représentation, on peut plus facilement
s'apercevoir que c'est la stratégie la plus intéressante du point de vue du joueur
B.

Intéressons nous maintenant à la probabilité de gain pour cette stratégie quan-
tique. Avant cela, on rappelle les relations liant la base classique à la base de B :

|0〉 = cos
(θ

2

)
|φ〉 − sin

(θ
2

)∣∣φ⊥〉 |1〉 = sin
(θ

2

)
|φ〉+ cos

(θ
2

)∣∣φ⊥〉
Supposons que {rs} = {00}. A va donc mesurer son qubit dans la base clas-

sique : elle a autant de chance de mesurer |0〉 que de mesurer |1〉. Dans les deux
cas, le qubit de B se retrouve projeté dans le même état que celui de A. Pour
gagner, les deux joueurs devront avoir la même réponse, car la question est {00}
et que 0⊕0 = 1⊕1 = 0∨0 = 0. Si A mesure |0〉, le qubit de B en sera de même, et
pour gagner B va devoir mesurer |φ〉 pour renvoyer la réponse {0}. Comme on le
voit sur l'équation ci-dessus, la probabilité d'être projeté sur l'état |φ〉 en mesurant
|0〉 dans la base {|φ〉,

∣∣φ⊥〉} est de | cos( θ
2
)|2 qui est dans notre cas actuel | cos(π

8
)|2

car B a reçu la question {0}.
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De la même manière, si A mesure |1〉, B aura son qubit projeté vers |1〉, mais
sans le savoir, car il ne l'a toujours pas mesuré. Voulant répondre {1} et étant
donné quei la probabilité de mesurer

∣∣φ⊥〉 à partir de l'état |1〉 est de | cos(π
8
)|2,

on retrouve bien le même résultat que dans le cas précédent. Ceci se véri�e de la
même manière pour les questions restantes {01}, {10} et {11}, en conséidrant que
| sin(3π

8
)|2 = | cos(π

8
)|2.

Ainsi la probabilité pour A et B de gagner le jeu avec la stratégie quantique
est de cos2(π

8
) ≈ 0.85355339. On surpasse alors la stratégie classique dans ce cas

grâce au partage d'un état intriqué.

2.1.4 Variante du CHSH-Game

Cette variante proposée par Alan Bojiç [5] possède globalement le même prin-
cipe de jeu que le CHSH original, hormis la condition de gain du jeu qui est modi�ée
en inversant les opérateurs de part et d'autre de l'égalité, ce qui nous donne, avec
les mêmes notations :

r ⊗ s = a ∨ b

Dans cette con�guration, on montre, en suivant le même raisonnement que
précédemment, que les joueurs A et B ne peuvent gagner que dans 50% des cas,
au maximum, s'ils adoptent une stratégie classique. En posant les équations du
jeu, le lecteur pourra s'assurer que l'on ne peut trouver de stratégie qui gagne à
chaque fois, et qu'au maximum, quelque soit la stratégie, on ne peut véri�er que
la moitié des équations du jeu simultanément au maximum.

En outre, si l'on suppose que les joueurs A et B décident de mettre en place
leur stratégie quantique utilisée pour le CHSH Game original, a�n de solutionner
le jeu proposé par Bojiç, on montre que la probabilité totale de gagner le jeu est
d'environ 0.526, ce qui est meilleur que la stratégie classique.

Ce qui est intéressant, c'est que l'auteur propose également une nouvelle stra-
tégie a�n d'augmenter la probabilité de gagner. Succintement, voici les étapes de
la nouvelle stratégie quantique :

� Les joueurs A et B partagent un système à 2-qubit maximallement intriqué,

initialisé avec l'état de Bell suivant 1√
2

(
|0A1B〉 − |1A0B〉

)
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� Si le joueur A reçoit la question {0}, il applique l'identité sur son qubit
(ou n'agit pas dessus). S'il reçoit la question {1} le joueur A applique la porte
d'Hadamard sur son qubit. Le joueur B agira de la même manière que le joueur
A, c'est à dire l'idenité si sa question est {0}, la porte d'Hadamard sinon.

� Les joueursA etB mesurent leur qubit et renvoient leurs réponses respectives
a et b, resultats de la mesure de leur qubit.

Avec cette nouvelle stratégie, si l'on détaille les di�érents cas, on s'aperçoit que
l'on gagne avec une probabilité de 1, pour les questions {00} et {11}, et avec une
probabilité de 25% pour les questions {01} et {10}. La probabilité totale de gagner
s'élève donc à 0.625, ce qui surpasse les stratégies précédentes appliquées à ce jeu.
On pourrait s'intéresser à trouver une stratégie plus performante, si elle existe.

2.2 GHZ-Game

Dans cette partie nous nous intéresserons au GHZ-game, variante à 3 joueurs
du CHSH game. Le GHZ-game, contrairement au CHSH game, propose une pro-
babilité de gain de 1, mais restreint le nombre de questions possibles de moitié
pour l'arbitre.

2.2.1 Déroulement du jeu

Soit R l'arbitre du jeu. Soient A, B et C les trois joueurs. Le jeu se déroule en
deux temps. Dans un premier temps, l'aribtre sollicite respectivement chacun des
joueurs en lui posant une question. Dans un second temps, les joueurs répondent
à leurs questions respectives de manière à gagner le jeu, c'est à dire de manière
à remplir une condition dépendant des questions posées et réponses données. La
di�culté du jeu réside dans le fait que les trois joueurs sont isolés et ne peuvent en
aucun cas communiquer entre eux une fois le jeu commencé (une fois la question
posée). Le résultat au jeu dépendera de la préparation et des stratégies mis en
place par les joueurs avant le début du jeu.

L'arbitre envoie donc une question à chaque joueur. Chaque question prend la
forme d'un bit : 0 ou 1. On note respectivement r, s et t la question posée à A, B
et C. Une manière de noter la question globale posée aux joueurs par l'arbitre est
de concaténer les questions en un seul nombre binaire rst.

L'ensemble des question possibles est noté Q :
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Q = {000, 001, 010, 011, 100, 101, 110, 111}

Le GHZ Game restreint de moitié le nombre de question pour l'arbitre, nous
donnant l'ensemble Q̃ :

Q̃ = {000, 011, 101, 110}

On note ensuite respectivement a, b et c les réponses données par les joueurs
A, B et C. A�n de gagner le jeu, les joueurs doivent remplir la condition suivante :

r ∨ s ∨ t = a⊕ b⊕ c

2.2.2 Résolution et stratégies classiques

Une fois le jeu dé�nit, il apparait intéressant de s'intéresser à sa résolution.
On note respectivement a(r), b(s) et c(t) la réponse des joueurs A, B et C à
leur question respective r, s et t. Résoudre totalement le jeu reviendrai à trouver
une stratégie, c'est à dire une réponse pour chacun des joueurs, en fonction de sa
question, qui satisfait la condition de gain. En d'autres termes, cela reviendrai à
trouver une solution aux équations suivantes :

0 ∨ 0 ∨ 0 = 0 = a(0)⊕ b(0)⊕ c(0)

0 ∨ 1 ∨ 1 = 1 = a(0)⊕ b(1)⊕ c(1)

1 ∨ 0 ∨ 1 = 1 = a(1)⊕ b(0)⊕ c(1)

1 ∨ 1 ∨ 0 = 1 = a(1)⊕ b(1)⊕ c(1)

En sommant ces équations, on en déduit la condition suivante :

a(0)⊕ a(0)⊕ b(0)⊕ b(1)⊕ b(0)⊕ b(1)⊕ c(0)⊕ c(1)⊕ c(1)⊕ c(0) = 0⊕ 1⊕ 1⊕ 1

Autrement dit, on en arrive à 0 = 1, ce qui est bien entendu une contradiction.
On peut alors en conclure qu'il n'existe pas une con�guration ou stratégie générale
permettant de gagner de manière sûre le jeu.

Cependant, si l'on ne peut pas gagner le jeu avec une probabilité de 1 avec
une stratégie classique, on peut se demander quelle est la probabilité maximale
de gagner au GHZ-Game possible avec une stratégie classique. Cela se comprend
également des équations établies plus haut. En e�et, on ne peut valider les 4
équations simultanément et gagner à chaque fois le jeu, mais on montre que l'on
peut au maximum valider 3 sur 4 des équations en choisissant certaines stratégies
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(assignations de a(0), a(1), . . . , b(1)). Par exemple, si on choisit la stratégie qui est
de répondre la question qui nous est posée, donc a(0) = b(0) = 0 et a(1) = b(1) = 1,
alors on peut gagner avec une chance de 3

4
= 75% car 3 des équations du systèmes

seront toujours résolues. Bien entendu, tout ceci suppose que l'arbitre choisit de
manière uniforme la probabilité de poser l'un ou l'autre des questions pour chaque
joueur.

C'est un assez bon résultat à première vue, mais on ne peut malheuresement
faire mieux pour les deux joueurs sans introduire de communication entre eux. Un
moyen d'améliorer ce résultat est l'introduction d'une corrélation entre les joueurs,
et c'est ce que nous allons voir avec la présentation de la stratégie quantique
suivante

2.2.3 Stratégie quantique pour le GHZ-Game

La règle impose aux joueurs de ne pas communiquer entre eux durant le jeu, et
donc d'éventuellement se préparer en amont pour maximiser les chances de gain.
Un des manières de se préparer serait de partager un état intriqué et d'utiliser
cette intrication a�n de mettre en place un stratégie permettant encore une fois
de maximiser les chances de gain, et si possible qu'elles soient supérieures à celles
des stratégies classiques.

Supposons que les joueurs partagent un système quantique intriqués, un 3-
qubit notamment. On choisit un état maximalement intriqué, c'est à dire un état
équivalent à |GHZ〉 noté |GHZ ′〉, construit comme suit :

|GHZ ′〉 = P⊗3H⊗3|GHZ〉 =
1

2

(
|000〉 − |011〉 − |101〉 − |110〉

)
avec

H =

(
1 1
1 −1

)
et P =

(
1 0
0 ei

π
2

)
La stratégie quantique pour chaque joueur est la suivante :
� Si le joueur reçoit la question {0} de la part de l'arbitre, il mesure sa particule
dans la base classique {|000〉, . . . , |111〉} (Z-basis), et renvoie à l'arbitre le
résultat de sa mesure comme réponse

� Si le joueur reçoit la question {1} de la part de l'arbitre, il mesure sa particule
dans la base X de Pauli, ce qui revient à appliquer la porte Hadamard puis
de mesure dans la base classique Z, et renvoie à l'arbitre le résultat de sa
mesure comme réponse
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Cette stratégie permet aux joueurs de gagner avec une probabilité de 1, pour
une question appartenant à Q̃.

Démonstration. Si la question posée est {000}, alors chacun des joueurs n'agit pas
(ou applique l'identité à sa particule) et mesure. L'état partagé par les 3 joueurs

demeure toujours |GHZ ′〉 = 1
2

(
|000〉 − |011〉 − |101〉 − |110〉

)
et donc quelque soit

l'état de base mesuré et envoyé par les joueurs, il répond bien à la condition de
victoire du jeu :

0 ∨ 0 ∨ 0 = 0⊕ 0⊕ 0 = 0⊕ 1⊕ 1 = 1⊕ 0⊕ 1 = 1⊕ 1⊕ 0

Si la question posée est {011}, les joueurs B et C appliquent Hadamard à leur
qubit avant la mesure. L'état partagé par les 3 joueurs devient donc :

|GHZ ′′〉 = I ⊗H ⊗H|GHZ ′〉 =
1

2

(
|001〉+ |010〉 − |100〉+ |111〉

)
On voit également ici que quelque soit l'état de base mesuré et la réponse

envoyée par les joueurs, cela répond bien à la condition de victoire du jeu :

0 ∨ 1 ∨ 1 = 0⊕ 0⊕ 1 = 0⊕ 1⊕ 0 = 1⊕ 0⊕ 0 = 1⊕ 1⊕ 1

Par permutation, l'état obtenu avec les questions {101} et {110} est équivalent
à celui obtenu avec la question {011}. On montre alors bien que pour les questions
{00}, {011}, {101} et {110}, la stratégie quantique est gagnante à 100%.

2.2.4 Questions restantes pour l'arbitre

Dans cette sous partie, nous nous intéresserons rapidement aux performances
de la stratégie quantique pour répondre aux questions restantes, non prises en
compte dans le GHZ-Game (Q\Q̃).

Pour la question {001}, par permutation équivalente à {010} et {100}, le troi-
sième joueur C applique la porte d'Hadamard à son qubit. L'état partagé par les
trois joueurs devient :

|GHZ ′′〉 = I⊗I⊗H|GHZ ′〉 =
1

2
√

2

(
|000〉+|001〉−|010〉+|011〉−|100〉+|101〉−|110〉−|111〉

)
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On remarque alors que seulement la moitié des états de base composant le
système répondent à la condition de victoire. La probabilité de victoire dans ce
cas est de 50%, et de même pour les questions {010} et {100} de ce fait.

La question {111} reçue par les joueurs implique l'application de la porte Hada-
mard à chacun des qubits du système. L'état qui en résulte s'exprime alors comme
suit :

|GHZ ′′〉 = H⊗H⊗H|GHZ ′〉 =
1

2
√

2

(
−|000〉+|001〉+|010〉+|011〉+|100〉+|101〉+|110〉−|111〉

)
On remarque de la même manière que l'on ne gagne que dans 50% des cas. On

comprend alors qu'introduire ces 4 questions dans le jeu réduirait la probabilité
moyenne de gagner à 75% au lieu de 100%, ce qui n'avantage pas le jeu et ne le
rend plus aussi e�cace.

2.2.5 Performance au GHZ-Game avec un état |W 〉 ou |BiSep〉
partagé

Une autre con�guration à laquelle nous pouvons ré�echir est celle où l'on choi-
sirait, à la place d'un état intriqué équivalent à |GHZ〉, un état intriqué équivalent
à |W 〉. On pourrait alors étudier la di�érence de performance entre les deux types
d'intrication pour la même stratégie quantique.

On suppose alors que les 3 joueurs partagent un état équivalent à |W 〉, tel que :

|W ′〉 = X⊗3|W 〉 =
1√
3

(
|011〉+ |101〉+ |110〉

)
Si la question {000} est posée, on observe que l'on gagne le jeu quelque soit la

mesure e�ectuée.

Si la question {011} est posée, les joueurs B et C appliquent Hadamard à leur
qubit, ce qui donne l'état suivant :

|W ′′〉 = I ⊗H ⊗H|W ′〉 =
1

2
√

3

(
|000〉 − |001〉 − |010〉+ |011〉+ 2|100〉 − 2|111〉

)
On remarque que l'on perd si l'on mesure les états de base |000〉 et |011〉. La

probabilité de perdre est donc la probabilité d'obtenir ces états :
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pperdre({011}) = 2× (
1

2
√

3
)2 = 2× 1

4
× 1

3
=

1

6

Donc la probabilité de gagner dans ce cas est de 5
6
. Ainsi, la probabilité générale

en moyenne de gagner est de 7
8

= 0.875 avec un état |W 〉 partagé.

On remarque alors que l'on ne peut gagner avec une probabilité de 1, et on le
montre même si l'on change de stratégie [2]. La di�érence de nature de l'intrication
joue ici un role important pour la performance du joueur. De la même manière, si
l'on prend un état bi-séparable comme état partagé par les 3 joueurs, un état du
type :

|BiSep〉 =
1√
2

(
|000〉 − |011〉

)
=

1√
2
|0〉 ⊗

(
|00〉 − |11〉

)
Dans ce cas, le qubit de A est totalement séparé, tandis que B et C partagent

un état maximalement intriqué (état de Bell). On montre alors que dans cette si-
tuation, si les joueurs utilisent la même stratégie quantique, la probabilité générale
de gagner au jeu est égale à 75%, c'est à dire la même qu'en classique. On peut
véri�er pour cela que les questions {000} et {011} amènent vers un gain certain,
tandis que les questions {101} et {110} ne permettent de gagner que la moitité du
temps. Si les joueurs B et C décident d'employer la même stratégie que celle vue
pour le CHSH-Game, alors le gain devient de 0.8536 comme attendu, ce qui est
toujours inférieur à 1.

Ainsi, la nature de l'intrication joue bien un rôle dans la performance de ce jeu
quantique, et peut être dans d'autres. Il serait intéressant d'investiguer d'autres
jeux quantiques similaires et d'étudier les performances de systèmes quantiques
d'autre nature (4-qubits, 3-qutrits, etc.) en fonction de leur intrication. Néan-
moins, il est toujours possible de modi�er ce jeu a�n que les performances soient
supérieures pour un type d'intrication donné. Ceci est l'objet de la prochaine sous-
section.

2.2.6 W-Game

Si l'on veut obtenir une meilleure performance avec un état partagé de type
|W 〉, il convient de modi�er la nature du jeu pour que la nature de l'intrication de
cet état soit un avantage par rapport aux autres classes d'intrications.

Il est intéressant de remarquer, tout d'abord, qu'un état de type |W 〉 fait
intervenir une intrication maximale mais du point de vue individuel d'une paire
à 2-qubits constituant l'état, tandis qu'un état de type |GHZ〉 fait intervenir une
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intrication "pure" entre les trois qubits de l'état, et de ce fait devient séparable si
on mesure un des qubits, ce qui n'est pas le cas pour un état |W 〉 où l'on obtiendrait
un état maximalement intriqué, à une opération �ltrage locale près.

Ceci nous amène à comprendre qu'un jeu, où l'arbitre pose les mêmes ques-
tions que dans le jeu GHZ, Q̃ = {000, 011, 101, 110}, mais qu'il choisit d'ignorer
aléatoirement un des joueurs, pourra être gagné si les joueurs partagent un état
de type |W 〉. Ceci revient en fait à jouer au CHSH-Game avec les 2 des 3 joueurs
choisis aléatoirement, et donc la probabilité de gagner sera identique pour les deux
jeux, qui sera de 0.8536, ce qui est meilleur que la performance classique (0.75) et
celle avec un état GHZ partagé (0.75).

2.2.7 Généralisation à n joueurs du GHZ-Game

Dans cette sous-section, nous proposons une généralisation à n-joueurs du
GHZ-Game précédemment présenté. Pour ce faire, on essaye de se placer dans
la même con�guration que pour le jeu à trois joueur.

Les paramètres à considérer pour le GHZ-Game à trois joueurs sont les sui-
vants : l'état équivalent à |GHZ〉 que les joueurs partagent, les questions posées
par l'arbitre, et les stratégies appliquées à chaque cas. On souhaite trouver une
généralisation de ces paramètres pour n joueurs, tout en gardant une probabilité
de 1 de gain. L'énoncé du jeu est donc le suivant.

Dé�nition du jeu

Soit J l'ensemble {J1, J2, . . . , Jn} de cardinal n des joueurs au GHZn-Game.
On dénote par R l'arbitre. On note {q1q2 . . . qn} la question envoyée par l'arbitre,
avec chaque qi étant la question envoyée au joueur Ji. On note ri la réponse du
joueur Ji. La condition de gain est toujours de la même forme :

n∨
i=0

qi =
n⊕
i=0

ri

Soit |GHZn〉 l'état |GHZ〉 généralisé à n-qubit, s'écrivant :

|GHZn〉 =
1√
2

(
|0〉⊗n + |1〉⊗n

)
On dé�nit ensuite |GHZ ′n〉 tel que :

|GHZ ′n〉 = H⊗n|GHZn〉 =
1√
2

(
H⊗n|0〉⊗n +H⊗n|1〉⊗n

)
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Or on sait que :

H⊗n|0〉⊗n =
2n−1∑
x=0

1√
2n
|x〉

De plus :

H⊗n|1〉⊗n =
2n−1∑
x=0

(−1)ϕ(x)√
2n
|x〉

avec ϕ(x) désignant le nombre de 1 dans l'écriture binaire de x.

Ainsi, on obtient un état |GHZ ′n〉 comme somme de 2n−1 état de base de
H = (C2)⊗n. Les états de base présents sont tous le sétats de base dont l'écriture
binaire comprend un nombre pair de 1. Ainsi, on peut ré-écrire l'état comme suit :

|GHZ ′n〉 =
2n−1∑
x=0

ϕ(x) + 1 (mod 2)√
2n−1

|x〉

On dé�nit ensuite l'état |GHZ ′′n〉 tel que :

|GHZ ′′n〉 = P⊗n|GHZ ′n〉 avec P =

(
1 0
0 ei

π
2

)
Cet état |GHZ ′′n〉, équivalent à |GHZ〉, sera partagé par les n-joueurs du GHZn-

Game.

L'arbitre sélectionne ensuite les questions à poser. Pour être sur d'avoir un
gain de 1, les questions sont restreintes à la question {00 . . . 0}, ainsi qu'à toutes
les questions comprenant exactement deux digits à 1 dans leur écriture binaire.
On dénombre alors 1 +

(
n
k

)
questions, soit n2−n+2

2
.

Si on prend le cas n = 3, on retrouve bien que les 1 +
(
3
2

)
= 4 questions choisies

par l'arbitre sont bien la question {000}, ainsi que toutes les questions possédant
2 digits à 1 exactement soit {011}, {101} et {110}.

En�n, la stratégie à appliquer est la même que pour le jeu à 3 joueurs. Si un
joueur reçoit la question {0}, il mesure son qubit dans la base classique, sinon
il applique la porte d'Hadamard à son qubit et ensuite il mesure dans la base
classique.
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Exemple avec 4 joueurs

Supposons que nous voulions généraliser le GHZ-Game pour 4 joueurs. On
commence par déterminer l'état quantique partagé par les 4 joueurs. On part de
l'état |GHZ4〉 a�n de construire l'état |GHZ ′4〉, tel que :

|GHZ ′4〉 = H⊗4|GHZ4〉 =
1√
8

(
|0000〉+|0011〉+|0101〉+|1001〉+|0110〉+|1010〉+|1100〉+|1111〉

)
On détermine ensuite |GHZ ′′4 〉 l'état partagé par les 4 joueurs :

|GHZ ′′4 〉 = P⊗4|GHZ ′4〉 =
1√
8

(
|0000〉+ i2|0011〉+ i2|0101〉+ i2|1001〉+ i2|0110〉

+i2|1010〉+ i2|1100〉+ i4|1111〉
)

Après simpli�cation, on obtient alors :

|GHZ ′′4 〉 =
1√
8

(
|0000〉−|0011〉−|0101〉−|1001〉−|0110〉−|1010〉−|1100〉+|1111〉

)
L'ensemble des questions disponibles pour l'arbitre sera

Q̃ = {0000, 0011, 0101, 1001, 0110, 1010, 1100}

conformément à la dé�nition du jeu. Nous verrons plus tard pourquoi la question
{1111} doit être enlevée du jeu.

Supposons alors que la question posée est {0000}. Chacun des joueurs va alors
appliquer l'identité sur son qubit et ensuite le mesurer, ce qui revient à ne pas agir
dutout sur leur état partagé |GHZ ′′4 〉. On remarque alors que quelque soit l'état
de base mesuré à partir de l'état partagé, tous sont solutions du jeu. Ainsi, les
joueurs gagnent le jeu avec une probabilité de 1 pour cette question.

Supposons à présent que la question posée est {0011}. Par permutation, l'étude
de cette question est équivalent à l'étude de toutes les questions restantes (hormis
{0000}). Les deux premiers joueurs ne vont donc pas agir sur leur qubit (ou appli-
quer l'identité), tandis que les deux derniers vont appliquer la porte d'Hadamard.
L'état partagé résultant est donc :

I ⊗ I ⊗H ⊗H|GHZ ′′4 〉 =
1√

8
√

2
√

2

[
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|00〉
(
|0〉+ |1〉

)(
|0〉+ |1〉

)
− |00〉

(
|0〉− |1〉

)(
|0〉− |1〉

)
− |01〉

(
|0〉+ |1〉

)(
|0〉− |1〉

)
−|10〉

(
|0〉+ |1〉

)(
|0〉−|1〉

)
−|01〉

(
|0〉−|1〉

)(
|0〉+ |1〉

)
−|10〉

(
|0〉−|1〉

)(
|0〉+ |1〉

)
−|11〉

(
|0〉+ |1〉

)(
|0〉+ |1〉

)
+ |00〉

(
|0〉 − |1〉

)(
|0〉 − |1〉

)]
En développant les produits tensoriels, on obtient :

I ⊗ I ⊗H ⊗H|GHZ ′′4 〉 =
1

2
√

8

[
|0000〉+|0001〉+|0010〉+|0011〉−|0000〉+|0001〉+|0010〉−|0011〉−|0100〉+|0101〉−|0110〉+|0111〉

−|1000〉+|1001〉−|1010〉+|1011〉−|0100〉−|0101〉+|0110〉+|0111〉−|1000〉−|1001〉+|1010〉+|1011〉

−|1100〉 − |1101〉 − |1110〉 − |1111〉+ |1100〉 − |1101〉 − |1110〉+ |1111〉
]

Après simpli�cations des termes doubles et ceux qui s'annulent, on obtient
l'état �nal :

I⊗I⊗H⊗H|GHZ ′′4 〉 =
1√
8

(
|0001〉+|0010〉−|0100〉+|0111〉−|1000〉+|1011〉−|1101〉−|1110〉

)
Si on regarde chacun des états de base, on se rend compte qu'ils font tous o�ce

de réponse gagnante pour le jeu. Les joueurs ont donc une probabilité de 1 de
gagner pour ce type de question, et donc, au �nal, une probabilité totale de gagner
au jeu de 1, comme voulu.

Concernant le délaissement question {1111} qui apparait en fait dans l'écriture
de l'état |GHZ ′′4 〉, ou peut se demander pourquoi ne pas tout simplement prendre
comme questions la séquence binaires de tous les états de l'état intriqué partagé par
les joueurs, comme c'est le cas pour le jeu GHZ-Game à trois joueurs. Et bien, on se
rend compte en posant les calculs que la stratégie ne marche pas pour la question
{1111} car le nombre de fois où l'on applique Hadamard n'est pas convenable pour
éliminer dans la simpli�cation �nale les états de base qui ne font pas gagner le jeu.
On peut s'attendre au même genre de phénomène pour un nombre de joueurs plus
grand. En restreignant les questions à celles qui ont deux digits à 1 exactement
dans l'écriture binaire, on s'assure d'écarter ce problème, mais l'on peut dans le
même temps omettre certaines questions qui permettent de gagner tout de même.
Une étude approfondie, et une démonstration rigoureuses des résultats présentés
se doit d'être menée dans la suite.
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2.3 Dilemme du prisonnier

2.3.1 Principe du jeu classique

Le dilemme du prisonnier est une jeu dans lequel deux prisonniers, qui sont
arrêtés pour l'infraction d'un petit délit, doivent faire face aux questions d'un
inspecteur de police. En e�et, ils sont, tout deux, soupçonnés d'avoir commis un
délit plus grave. Cependant, l'inspecteur ne dispose d'aucunes preuves plausibles
contre ces deux "malfrats" concernant le deuxième délit. Par conséquent, ce dernier
va les séparer et les couper de toutes communications entre eux a�n d'obtenir des
aveux. Ce jeu fait donc partie des jeux non coopératif puisque chaque joueur doit
prendre sa décision sans connaître la décision prise par l'autre joueur.

A�n d'obtenir des aveux, l'inspecteur de police propose, aux deux prisonniers,
la possibilté de dénoncer l'autre prisonnier a�n d'écoper d'une peine peine de prison
moins importante. Chaque prisonnier peut également refuser cette option. Ainsi,
di�férents résultats, exactement 4 dans notre cas, peuvent avoir lieu. Ces derniers
sont résumés dans le tableau suivant :

hhhhhhhhhhhhhhhhhhPrisonnier 1
Prisonnier 2

Se taire Dénoncer

Se taire (3 ; 3) (0 ; 5)
Dénoncer (5 ; 0) (1 ; 1)

Dans notre étude de cas, nous avons choisi des gains qui pourraient corres-
pondre à des allégements de peine de 0, 1, 3 ou 5 ans. Il faut noter que dans la
notation choisie pour le tableau (à savoir (Gain 1 ; Gain2)), le gain 1 et le gain 2
correspondent respectivement au gain du prisonnier 1 et du prisonnier 2. L'objectif
de chaque joueur est de maximiser son gain individuel.

2.3.2 Analyse des stratégies classiques

1. Coopération des 2 prisonniers (Loyauté)
Dans ce cas où les deux prisonniers choisissent de ne pas se dénoncer et faire
preuve de solidarité, nous pouvons constater que l'allègement de la peine de
prison est de 3 ans. Le gain est maximal pour l'ensemble des deux joueurs
mais ne l'est pas si l'on prend chaque joueur individuellement. Cette situation
est très fructueuse pour les deux partis mais nécessite une certaine con�ance
l'un en vers l'autre.
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On peut remarquer que si l'on �xe la stratégie du premier prisonnier et
que l'on fait varier la stratégie de l'autre, le gain du premier prisonnier est
augmenté en dépit du gain de l'autre prisonnier. Ici, le proverbe "le malheur
des uns fait le bonheur des autres" est mis à l'honneur. On appelle ce type
de stratégie un "Pareto optimal".

2. L'un dénonce l'autre (Individualisme)
Cette con�guration est envisageable pour les deux joueurs. Il est ainsi pos-
sible de faire preuve d'égoïsme en dénonçant son collègue a�n d'obtenir un
allègement de peine. Dans notre cas, le dénonciateur obtiendra un allège-
ment de peine de 5 ans, ce qui correspond au gain maximal individuel, alors
que l'autre joueur sera accusé coupable et ne béné�ciera d'aucune indulgence,
c'est-à-dire un allègement de peine nul (gain minimal individuel). Cette stra-
tégie amène donc à une trahison de l'un en vers l'autre en vue d'obtenir un
gain maximal individuel.

3. Dénonciation des 2 prisonniers (Lâcheté mutuelle)
La dernière stratégie possible consiste à une dénonciation "inter" prisonnier.
Les deux vont tenter d'obtenir le gain maximal individuel. Cependant, les
aveux des deux prisonniers ne vont pas permettre l'obtention d'un allége-
ment de peine maximale. En e�et, les deux témoignages se compensent et ne
permettent pas d'accuser un prisonnier. Par conséquent, chacun va écoper
d'un allègement d'uniquement 1 an.

Nous pouvons également remarquer que cette stratégie est un équilibre de
Nash. C'est-à-dire, qu'aucun des deux joueurs n'a intérêt à changer de stra-
tégie. Leurs gains ne seraient que détérioré.

2.3.3 Notion de dilemme

Pour comprendre la notion de dilemme, il nous su�t d'imaginer la ré�exion
qu'aurait un joueur avant de choisir sa stratégie. En e�et, s'il considère que son
adversaire décide de se taire alors il a tout intérêt à le trahir en le dénonçant
(gain maximal de 5 au lieu de 3 s'il se taisait lui aussi). Dans le cas inverse où
il considèrerait que son adversaire décide de le trahir, il aurait également tout
intérêt à le trahir également a�n d'obtenir encore le gain le plus intéressant pour
lui, c'est-à-dire un gain de 1 (au lieu de 0 s'il se taisait). Ainsi, il nous semblerait
que la stratégie de la trahison soit celle que nous devrions choisir. Cependant, nous
oublions un détail. Le prisonnier peut également ré�échir de la manière que nous
l'avons fait précédemment. Dans ce cas la, ils obtiendraient tout deux un gain de 1
au lieu d'un gain de 3 s'ils s'étaient tus. De fait, il réside bien dans ce jeu une notion
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de dilemme qui réside dans l'absence de communication entre les deux prisonniers
et plus précisément dans l'altercation entre l'intérêt individuel et collectif.

2.3.4 Déroulement du jeu quantique

Nous allons maintenant voir le dilemme du prisonnier sous sa forme quantique.
Pour ce faire, le circuit représentant les di�érentes étapes à e�ectuer peut être
représenté de la manière suivante :

Prisoner Dilema Circuit.png

Figure 2.1 � Circuit : Dilemme du prisonnier quantique

Dans cette nouvelle con�guration, les deux prisonniers détiennent chacun un
qubit. Ces derniers forment un système dont l'état est intriqué (ou non séparable).
En d'autres termes, les modi�cations appliquées à un qubit vont nécessairement
provoquer des répercussions sur l'état du second qubit, ils sont donc ainsi indirecte-
ment liés. C'est cette particularité qui va être exploitée lors du choix des stratégies.
Chacun des deux prisonniers va pouvoir e�ectuer des manipulations sur son qubit.

Tout d'abord, nous allons considérer que chaque stratégie, se taire ou dénoncer,
sera notée, respectivement, sous la forme de deux états de base |C〉 et |D〉, qui

peuvent être écrit sous la forme de deux vecteurs : |C〉=
(

1
0

)
et |D〉=

(
0
1

)
.

1. Initialisation
Cette étape correspond à l'intrication des deux qubits par l'intermédiaire
d'un opérateur Ĵ . Cet opérateur est connu par les deux prisonniers. Ainsi,
nous obtenons l'état initial du système intriqué sous la forme :

|ψi〉 = Ĵ |CC〉 = cos(γ
2
)|CC〉+ isin(γ

2
)|DD〉
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γ représente le taux d'intrication entre les deux qubits. Sa valeur est comprise
entre 0 (cas où le sytème à 2 qubits est séparable) et π

2
(cas où le système à

2 qubits est maximalement intriqué).

2. Opérateurs locaux et mesure
Chaque prisonnier détient un opérateur qu'il peut appliquer à son propre
qubit. On notera Û1 et Û2, respectivement, l'opérateur du prisonnier 1 et du
prisonnier 2. L'opérateur Û , dé�ni comme ci-dessous, représente l'ensemble
des stratégies possibles, avec 0 ≤ θ ≤ π et 0 ≤ φ ≤ π/2 :

Û(θ, φ)=

(
eiφcos(θ/2) sin(θ/2)
−sin(θ/2) e−iφcos(θ/2)

)
Remarque : Nous pouvons constater que les stratégies classiques C et D sont
incluses. En e�et, chacune d'elle est caractérisée par un opérateur particulier.
Soient :

Û(0, 0) = I =

(
1 0
0 1

)
↔ C : "Se taire"

Û(π, 0) = X =

(
0 1
−1 0

)
↔ D : "Dénoncer"

Nous obtenons ainsi l'état du système :

|ψii〉 = (Û1 ⊗ Û2)Ĵ |CC〉.

Ensuite, il nous su�t d'appliquer la transformation inverse de Ĵ nommée Ĵ†

a�n d'obtenir l'état �nal du système :

|ψf〉 = Ĵ†(Û1 ⊗ Û2)Ĵ |CC〉

Finalement, nous e�ectuons la mesure de l'état �nal |ψf〉 a�n d'obtenir l'un
des états de base |CC〉, |CD〉, |DC〉 et |DD〉.

3. Gain
L'état �nal du système peut être écrit sous la forme suivante :

|ψf〉 = ψ1|CC〉+ ψ2|CD〉+ ψ3|DC〉+ ψ4|DD〉

La matrice des gains peut être dé�ni comme suit :

Π=

(
|ψ1|2 |ψ2|2
|ψ3|2 |ψ4|2

)
=

(
PCC PCD
PDC PDD

)
Nous pouvons maintenant exprimer le gain de chaque prisonnier, à l'aide des
gains classique �xés précédement, de la manière suivante :
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$1 = 3PCC + 1PDD + 5PDC + 0PCD
$2 = 3PCC + 1PDD + 0PDC + 5PCD

$1 et $2 représentent les gains respectifs du prisonnier 1 et 2. Pxy représente
la probabilité pour que l'état �nal soit dans l'état |xy〉. Elle est dé�nie telle
que Pxy = |xy||ψf〉|2.

Nous pouvons également constater que l'état �nal |ψf〉 dépend du choix de
stratégie des deux joueurs et ainsi les gains respectifs $1 et $2 dépendent
également de la stratégie des deux joueurs.

4. Table de gains : Opérateur Z
En utilisant l'opérateur Z,

Z=

(
1 0
0 −1

)
nous pouvons obtenir la table des gains suivante :

hhhhhhhhhhhhhhhhhhPrisonnier 1
Prisonnier 2

Porte I Porte X Porte Z

Porte I (3 ; 3) (0 ; 5) (1 ; 1)
Porte X (5 ; 0) (1 ; 1) (0 ; 5)
Porte Z (1 ; 1) (5 ; 0) (3 ; 3)

Nous pouvons constater que l'application de cette porte Z permet d'obtenir
une stratégie quantique qui est à la fois un équilibre de Nash et un Pareto
Optimal. En e�et, si les deux joueurs choisissent la stratégie quantique, ils
n'ont aucun intérêt à changer de position car leurs gains individuels sont au
maximum. Dans la con�guration classique, on pouvait obtenir un équilibre
de Nash ou un Pareto Optimal mais on ne pouvait pas obtenir ces deux
caractéristiques en même temps.
� Démonstration des résultats obtenus :
Nous allons expliquer les étapes de calculs a�n d'obtenir les gains obtenus
pour la stratégie (Z,Z).
Soit :

Ĵ = 1√
2
(I ⊗ I + iX ⊗X)

Alors :
|ψi〉 = Ĵ |CC〉 = 1√

2
(|CC〉+ i|DD〉)

Or :

Z ⊗ Z=
(

1 0
0 −1

)
⊗
(

1 0
0 −1

)
=

(
1 0
0 1

)
= I

D'où :
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|ψii〉 = (Z ⊗ Z)Ĵ |CC〉 = 1√
2
(|CC〉+ i|DD〉).

Ensuite :
Ĵ† = 1√

2
(I ⊗ I − iX ⊗X)

Ainsi :
|ψf〉 = Ĵ†(Z ⊗Z)Ĵ |CC〉 = 1√

2
∗ 1√

2
(|CC〉 − i|DD〉+ i|DD〉 − i ∗ i|CC〉) =

|CC〉
Finalement :

$1 = 3PCC + 1PDD + 5PDC + 0PCD = 3
$2 = 3PCC + 1PDD + 0PDC + 5PCD = 3

Les autres couples d'opérateurs amènent à des calculs similaires. Par consé-
quent, nous ne détaillerons pas les calculs des autres stratégies.

Choix de la porte quantique

Comme nous l'avons vu précédemment, il est possible de dé�nir la matrice,
qui représente l'ensemble des stratégies possibles pour les deux prisonniers, de la
manière suivante, avec 0 ≤ θ ≤ π et 0 ≤ φ ≤ π/2 :

Û(θ, φ)=

(
eiφcos(θ/2) sin(θ/2)
−sin(θ/2) e−iφcos(θ/2)

)
Nous pouvons obtenir l'évolution du comportement du jeu quantique en faisant

varier le paramètre γ correspondant au niveau d'intrication du système composé
par la paire de qubits détenue par les deux prisonniers [49]. Nous pouvons distin-
guer 3 types de comportements :

1. 0 ≤ γ ≤ arcsin( 1√
5
) → Comportement classique

2. arcsin( 1√
5
) ≤ γ ≤ arcsin( 2√

5
)→ Comportement intermédiaire

3. arcsin( 2√
5
) ≤ γ ≤ π

2
→ Comportement quantique

2.4 Binary Constraint System Game

Le principe du Binary Constrain System est un moyen de modéliser de nom-
breux problèmes informatique et logiques, dans la mesure où il est dé�nit par un
nombre �nit de variables et contraintes formelles, pouvant ensuite être appliquées
dans divers domaines. C'est un sujet qui a participé pour donner de l'importance
à la théorie de la complexité informatique et et l'information quantique. C'est un
jeu que l'on peut retrouve implicitement dans les travaux de Mermin concernant le
théorème de Bell. A�n d'expliquer ce jeu, nous nous baserons sur le travail présenté
dans le célèbre article [8].
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2.4.1 Principe du jeu

Soient v1, v2, . . . , vn, n variables binaires telles que ∀i ∈ J1, nK, vi ∈ {0, 1} = Z2.
Soient c1, c2, . . . , cm, m contraintes. Chaque contrainte est une fonction à plusieurs
variables binaires et à valeur dans Z2 :

∀j ∈ J1,mK, cj :

{
Zk2 → Z2

(vi1 , vi2 , . . . , vik) 7→ vi1 ⊕ vi2 ⊕ · · · ⊕ vik = z ∈ Z2

Un Binary Constraint System se composera alors d'un ensemble de variables
et de contraintes. On dit qu'un BCS Game est satis�able si on peut trouver un
n-uplet (v1, v2, . . . , vn) qui satisfont chacune des m contraintes.

Un exemple classique de BCS est celui énoncé dans la version du théorème de
Bell introduite par Mermin [6]. Dans cet exemple, on a n = 9 variables et m = 6
contraintes :

v1 ⊕ v2 ⊕ v3 = 0 v1 ⊕ v4 ⊕ v7 = 0

v4 ⊕ v5 ⊕ v6 = 0 v2 ⊕ v5 ⊕ v8 = 0

v7 ⊕ v8 ⊕ v9 = 0 v3 ⊕ v6 ⊕ v9 = 1

Dans notre exemple, on se rend bien compte que le jeu n'est pas satis�able,
dans la mesure où l'on ne peut trouver d'a�ectation pour les variables qui véri�ent
les 6 contraintes. Nous pouvons aussi remarquer que la somme des équations nous
amène à l'absurdité 0 = 1.

Un élément important concernant les BCS, et que l'on peut associer à chaque
Binary Constraint System un jeu "non-local" à deux joueurs, nommé Binary
Constraint System Game, selon le principe suivant. Soient A et B deux joueurs
coopérant, mais qui ne peuvent pas communiquer une fois le protocole du jeu
entamé. Soit R l'arbitre du jeu.

L'arbitre R choisit de manière aléatoire, mais uniforme, une contrainte du jeu cs
ainsi qu'une variable vt intervenant dans la contrainte cs. L'arbitre envoie l'indice
s à A et l'indice t à B. Le joueur A doit renvoyer une a�ectation des toutes les
variables présentes dans la condition cs. Le joueur B doit renvoyer une a�ectation
de la variable vt. L'arbitre R accepte leur réponse, c.a.d le jeu est gagné, si et
seulement si :

� L'a�ectation des variables choisie par A satisfait bien la condition cs
� L'a�ectation de la variable vt choisie par B correspond à celle choisie par A
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Une stratégie de résolution du jeu est dite parfaite si elle permet de gagner
le jeu de manière sûre. Ainsi, on en déduit que tout BCS Game qui est satis-
�able admet une stratégie parfaite classique. Il serait intéressant, par contre, de
se demander s'il existe des stratégies quantiques parfaites pour des BCS Games
non-satis�ables.

2.4.2 Stratégie quantique parfaite

Le travail de Mermin [6, 7], notamment ses découvertes sur les observables, a
des répercutions sur les stratégies quantiques pour le BCS Game en particulier
pour les 2 exemples qui suivent.

Le premier exemple est celui présenté précedemment, avec n = 9 et m = 6. Le
second exemple est un BCS Game avec n = 10 variables et m = 5 contraintes.
On peut représenter ces jeux sous la forme de �gures géométriques : les variables
sont disposées en fonction de leur appartenance aux conditions. Une condition
correspond à une ligne de variables reliées par un trait simple ou double. Le trait
simple indique que la somme modulo 2 des variables doit être égale à 0, tandis que
le trait double indique une somme modulo 2 égale à 1. Les �gures de ces deux jeux
sont appelés "magiques", car une stratégie parfaite quantique existe pour résoudre
ces jeux, qui ne sont pas resolvables en classique. On représente alors les 2 jeux
sur les �gures suivantes.

Figure 2.2 � Carré magique (à gauche) - Pentagramme magique (à droite)

A�n de comprendre la stratégie quantique proposée par Mermin, on transforme
tout d'abord chaque variable vi ∈ {0, 1} en variable Vi = (−1)vi ∈ {+1,−1}.
Chaque contrainte peut alors se redé�nir comme le produit des variables Vi a
valeur dans {+1,−1}. On redé�nit alors la notion de satisfaisabilité pour une
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a�ectation quantique des variables comme une a�ectation de n opérateurs Her-
mitiens A1, A2, . . . , An aux variables V1, V2, . . . , Vn telles que ces trois conditions
soient remplies :

Condition 1 : Chaque opérateur Ai est un observable binaire dont les valeurs
propres appartiennent à {+1,−1}, autrement dit, A2

i = I.

Condition 2 : Chaque couple d'observables Ai et Aj appartenant à la même
contrainte doivent commuter, autrement dit, AiAj = AjAi.

Condition 3 : Les n opérateurs A1, A2, . . . , An doivent satisfaire chacune des
contraintes cs : {+1,−1}k → {+1,−1} agissant sur les variables Vi1 , Vi2 , . . . , Vik ,
de telle sorte que chaque équation cs(Ai1 , Ai2 , . . . , Aik) = I ou − I soit satisfaite.

Une fois ceci dé�nit, le théorème mit en place par Cleve et Mittal [8] nous
permet d'avoir une relation entre a�ectation quantique satisfaisante et stratégie
parfaite :

Théorème 2.4.1. Quelque soit le Binary Constraint System considéré, s'il existe
une stratégie parfaite pour le BCS Game correspondant, alors il existe une a�ec-
tation quantique satisfaisante au jeu.

L'idée derrière cela est que s'il existe une stratégie parfaite au jeu, en utilisant
un état maximallement intriqué (de type |GHZd〉 typiquement), les opérateurs
peuvent être créé par projection à partir de la stratégie parfaite, de telle sorte que
ces opérateurs satisfont les 3 trois conditions émises précédemment. Par ailleurs, s'il
existe une telle a�ectation quantique, alors toutes les contraintes seront satisfaites
et il existera un observable Ai pour chaque variable Vi. La preuve complète est
détaillé dans l'article [8].

Ainsi, si l'on revient à nos exemples précédents, pour chaque jeu, une a�ectation
quantique satisfaisante faisant o�ce donc de stratégie parfaite est présentée sur
les �gures ci-contre.

avec : X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)

et donc : X2 = Y 2 = Z2 = I, XY = iZ , Y Z = iX et ZX = iY

Le lecteur pourra en e�et véri�er que le produits des observables sur chaque
ligne simple donne bien l'identité, tandis que le produit des observables liées par
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Figure 2.3 � A�ectations quantiques valides - Carré magique (à gauche) - Penta-
gramme magique (à droite)

des lignes doubles donne bien l'opposé de l'identité. Pour des simpli�cations de
notation, la juxtaposition d'observables correspond en fait à leur produit tensoriel.
On a donc par exemple ZX = Z ⊗X.

Si l'on se penche par exemple sur la première ligne solution du carré magique,
on véri�e bien que le produit donne l'identité :

(Z ⊗ I)(I ⊗ Z)(Z ⊗ Z) = (ZIZ)⊗ (IZZ) = (Z2)⊗ (Z2) = I ⊗ I

De même pour la dernière colonne solution du carré magique, on véri�e bien
que le produit donne l'opposé de l'identité :

(Z⊗Z)(X⊗X)(Y⊗Y ) = (ZXY )⊗(ZXY ) = (iY Y )⊗(iY Y ) = i2(Y 2)⊗(Y 2) = −(I⊗I)

2.4.3 Condition d'inexistance de stratégie quantique par-

faite

Comme discuté dans l'article [10] et proposé par Speelman, il existe pour cer-
tains BCS Game un moyen simple de déterminer s'il n'existe pas de stratégie
quantique parfaite résolvant le jeu. On étudie pour cela la cohérence des équa-
tions obtenues en posant le jeu de manière quantique en tentant de trouver une
contradiction.

Etudions par exemple le BCS-Game, avec n = 6 variables, etm = 4 contraintes
, représenté par la �gure et les équations suivantes :

51



Figure 2.4 � Schéma du jeu en exemple

v1 ⊕ v6 ⊕ v3 = 0 v1 ⊕ v4 ⊕ v2 = 0

v2 ⊕ v5 ⊕ v3 = 0 v4 ⊕ v5 ⊕ v6 = 1

On suppose alors qu'une a�ectation quantique satisfaisante existe. On construit
alors, à partir des variables v1, v2, . . . , v6, les variables V1, V2, . . . , V6, ainsi que les
observablesA1, A2, . . . , A6 correspondants. On retraduit alors chacune des contraintes
avec les obersvables, ce qui nous donne :

A1A6A3 = I A1A4A2 = I

A2A5A3 = I A4A5A6 = −I

Partont de la seconde contrainte, qui sera notre équation principale, ce qui
nous donne A1A4A2 = I. En multipliant par A2 à gauche dans la troisième
contrainte, on obtient A2 = A5A3. En réinjectant dans notre équation principale
on a A1A4A5A3 = I. En multipliant à droite par A3 dans la première contrainte,
on en déduit que A3 = A1A6. D'où la nouvelle expression de l'équation principale
A1A4A5A1A6 = I. En multipliant par −A4 à gauche dans la quatrième contrainte,
on obtient A4 = −A5A6. On en déduit alors que A1A5A6A5A1A6 = −I. En uti-
lisant la propriété de commutativité pour les observables A1 et A6, et pour les
variables A5 et A6 on réarrange les termes de l'équation principale ce qui nous
donne A1A6A5A5A6A1 = −I. Or on a bien A2

1 = A2
5 = A2

6 = I d'après la pre-
mière condition. Ce qui nous donne �nalement l'absurdité I = −I. Ainsi par ce
raisonnement par l'absurde, on en déduit qu'il n'existe pas d'a�ectation quantique
satisfaisante, et donc par contraposée du théorème, qu'il n'existe pas de stratégie
quantique parfaite pour ce jeu.
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A partir du moment où il n'existe pas de stratégie quantique parfaite pour ce
jeu, d'aucuns pourront s'intéresser à trouver une stratégie quantique surpassant
les performances des stratégies classiques, pour ce jeu non resolvable parfaitement
de manière classique ni quantique.

2.5 Minority game

Dans cette section, nous vous présenterons le jeu de la minorité, appelé Minority
Game en anglais. Nous tenterons d'expliquer l'origine et le principe général du jeu.
Nous introduirons ensuite, comme cela est fait pour le dilemme du prisonnier, le
formalisme mathématique qui nous permettra de mieux comprendre l'introduction
de stratégies quantiques. Nous étudierons en�n les résultats de l'introduction de
telles stratégies, pour 3 et 4 joueurs, puis nous terminerons sur les recherches qui
peuvent être menées par rapport à ce jeu.

2.5.1 Origine et énoncé du jeu

Le jeu du Minority Game est en fait issu à la base du problème du bar d'El
Farol. Ce problème est un problème connu de la théorie des jeux, créé en 1994 par
W. Brian Arthur, et inspiré d'un bar à San Fe au Nouveau Mexique. Le même
problème a été aussi formulé et résolu dynamiquement six ans auparavant [12].

Le problème peut être formulé comme suit : Soit un ensemble �ni de personne,
appelé population. Tous les jeudis soir, toutes ces personnes désirent aller au bar
d'El Farol. Cependant, ce bar est assez petit, et il n'est alors plus intéressant de
se rendre au bar si celui-ci est déjà assez rempli. On dé�nit alors les préférences
des personnes selon les conditions suivantes :

� Si moins de 60% de la population se rend au bar, ils passeront tous un
meilleur moment que s'ils étaient restés à la maison.

� Si plus de 60% de la population se rend au bar, ils passeront tous un pire
moment que s'ils étaient restés à la maison.

De plus, et c'est ce qui rend la situation problématique, il est nécessaire pour
chacune des personnes de décider en même temps si elle va ou non au bar. Elles ne
peuvent pas attendre la réponse des autres, pour un jeudi particulier, et prendre
leur décisions en fonction de cela.

Un aspect dans la resolution du problème est que, si tout le monde utilise la
même stratégie pure (totalement déterminée), cea est voué à l'échec. En e�et, si la
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stratégie déterministe suggère que le bar ne sera pas rempli, alors tout le monde
ira au bar, et il sera alors rempli, et inversement.

En théorie des jeux, une des solutions envisageable pour ce genre de problème
est d'utiliser ce que l'on appelle en anglais "a mixed strategy", c'est à dire a�ecter à
chaque stratégie pure une probabilité d'être choisie. Dans le cas où l'on ne considère
le problème que pour un seul jeudi, on montre qu'il existe un unique Equilibre de
Nash symétrique pouvant être atteint à l'aide d'une "mixed strategy" où toutes les
personnes choisissent d'aller au bar avec une certaine probabilité. Cette dernière
dépend du nombre de personnes dans la population, du seuil à partir duquel on
considère que le bar est rempli, et des préférences relatives d'aller au bar rempli ou
vide, ou de rester chez soi. D'autres équilibres de Nash peuvent emmerger si une
ou plusieurs personnes choisissent d'utiliser une stratégie pure, mais ces équilibres
ne sont alors plus symétriques.

En outre, Herbert Gintis propose un certain nombre de variantes du problème
dans son ouvrage. Dans certains variantes, les personnes peuvent communiquer
entre elles avant d'aller au bar. La subtilité de ces variantes est que les personnes
ne sont pas obligées de dire la vérité et peuvent donc utiliser le blu� pour maximiser
leurs chances d'être satisfaites.

Le Minority Game peut alors être vu comme une variante du problème ci-
dessus, ou sa formulation mathématique. Soit N le nombre de joueurs, correspon-
dant à la taille de la population. Chaque joueur choisit de manière privée une des
deux répones : 0 ou 1. Les choix sont alors comparés, et les joueurs dont le choix
est minoritaire gagnent. Si tous les joueurs font le même choix, ou s'il y a le même
nombre de joueurs pour chaque choix, alors il n'y a pas de gagnants.

La con�guration de jeu la plus répandue est lorsque le jeu est répété sur plu-
sieurs tours. Chaque joueur n'a qu'un choix limité de stratégies, et chaque joueur
ne sait rien sur les autres joueurs. Leurs décisions se basent alors sur les précédents
cas de gain et sur la performance de leurs stratégies dans le passé. Dans notre cas,
on s'intéresse uniquement au cas où les joueurs ne jouent qu'une seule fois.

2.5.2 Mise en place du jeu quantique

Dans cette sous-section, on posera toute la théorie permettant de dé�nir la
version quantique du MinorityGame. Tout ce formalisme est commun à la théorie
des jeux quantiques (comme le Dilemme du Prisonnier quantique par exemple) et
dans ce cas est issue du travail de Benjamin & Hayden [13].
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On pose alors N le nombre de joueurs au Minorty Game. On dé�nit un pro�l
de stratégie, une a�ectation du vecteur s = (s1, s2, . . . , sN), avec si la stratégie
du joueur i. On parlera d'équilibre complet ou "pur" pour désigner de manière
théorie un pro�l de stratégie avec un certain degré de stabilité, comme par exemple
l'équilibre de Nash. La version du jeu, comme précisé ci-dessus, est considérée
comme statique : le jeu n'est joué qu'une seule, et on ne prend donc pas en compte
l'historique des autres parties. De plus, chaque joueur a une connaissance complète
de la structure du jeu.

Figure 2.5 � Modèles de jeux classiques et quantiques

Sur la �gure (a), un modèle de jeu classique général est présenté. Chaque joueur
reçoit un bit initialisé à 0, et n'a que deux possibilités d'action par manipulation
locale : inverser le bit (ce qui donne ) ou le laisse tel quel (ce qui donne 0). Ensuite
chaque joueur renvoie son bit pour l'état de mesure �nal où les gains seront alors
calculés. Sur la �gure (b), est représenté la dé�nition générale d'un jeu quantique
à N joueurs.

Ainsi, pour passer du jeu classique au jeu quantique, le support de l'informa-
tion classique (le bit) doit être remplacé par le qubit, tout d'abord. Ensuite, ces
qubits doivent être mutuellement intriqués. S'ils ne le sont pas, on peut alors bien
retrouver une modélisation quuantique du jeu classique, mais où ancune stratégie
quantique plus performante ne pourra être mise en place, car on n'agirait que sur
chaque qubit séparement pour chaque joueur. Cependant, le jeu quantique que l'on
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veut mettre en place doit tout de même être une généralisation du jeu classique :
on dira que le jeu quantique doit contenir le jeu classique. L'opérateur qui cor-
respond donc à ne pas altérer le bit 0 classique sera l'opérateur unitaire identité
en quantique. De même, l'opérateur X = σX , opérateur NOT ou opérateur X de
Pauli, doit correspondre à inverser le bit 0 en classique et donc avoir le bit 1. De
ce fait, si on restreint les stratégies possibles pour les joueurs aux portes {I,X},
on retrouve les gains du jeu classique.

D'autre part, et a�n d'établir une correlation entre les qubits en entrée, on
utilise la paire de portes quantiques présentées précédement. En e�et, comme pré-
senté sur la �gure (b), c'est la porte JNN qui se chargera d'intriquer les qubits
initialisés à |0〉. Si on se restreint aux portes unitaires introduisant une intrication
maximale, agissant symétriquement sur |1〉 et |0〉, on peut alors l'écrire de manière
générale :

JN =
1√
2

(
I⊗N + iX⊗N

)
Les N joueurs partageront donc en réalité un état |ψ〉 maximalement intriqué

équivalent à |GHZN〉 exprimé par :

|ψ〉 = JN |0〉⊗N =
1√
2

(
I⊗N |0〉⊗N + iX⊗N |0〉⊗N

)
=

1√
2

(
|0〉⊗N + i|1〉⊗N

)
A partir de là, on préfèrera utiliser des stratégies déterministes modélisées par

des matrices unitaires à appliquer sur son qubit pour chaque joueur. L'utilisation
de ce type de stratégie permet de ne pas détruire l'intrication introduite par la
porte JN . De plus, des équilibres "purs" ne peuvent être atteinte qu'uniquement à
partir de portes unitaires.

2.5.3 Cas où N = 3

Dans le cas où N = 3 personnes jouent au Minority Game, on montre que
l'introduction d'une stratégie quantique n'apporte pas de nouvel équilibre "pur".

E�ectivement, on peut tout d'abord dé�nir la stratégie pure la plus générale
pour le joueur i par

si = αi

(
βiiX + γiiY

)
+ ζi

(
ϕiI + θiiZ

)
où tous les αi, βi, γi, ζi, ϕi et θi des coe�cents réels tels que :
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α2
i + ζ2i = β2

i + γ2i = ϕ2
i + θ2i = 1

En appliquant la porte J3 à l'état |ψ〉 partagé par les 3 joueurs et après sim-
pli�cation des termes, on remarque alors que les coe�cients β, γ, varphi, θ es
simpli�ent et disparaissent. Ceci nous amène à avoir une probabilité p1 que le
joueur 1 soit minoritaire de :

p1 =
(
ζ1α2α3

)2
+
(
α1ζ2ζ3

)2
Les résultats pour les joueurs 2 et 3 se calculent de manière analogue. On

remarque alors que ce sont les mêmes probabilités que celles attendues dans le jeu
classique, si on pose α2 comme la probabilité d'inverser le bit 0 en classique (donc
la probabilité d'obtenir 1).

Finalement, les paramètres supplémentaires introduits par les stratégies quan-
tiques n'apportent aucun avantage, et le jeu quantique se résume alors simplement
à la version classique, dans le cas où N = 3.

2.5.4 Cas où N = 4

La situation où 4 personnes sont invitées à jouer au jeu de la minorité est
di�érente du cas précédent dans la mesure où l'introduction de stratégies quantique
aura une importance sur l'issue du jeu pour les joueurs.

Si l'on s'intéresse dans un premier temps aux stratégies classiques possibles, les
joueurs n'ont en fait de meilleur chois que de choisir aléatoirement et uniformément
entre répondre {0} (ne pas aller au bar) ou {1} (y aller). Si on liste alors toutes les
possibilités de réponses pour les 4 joueurs (24 = 16 au total), et que l'on compte le
nombre de cas où un joueur i est gagnant, on remarque que cela n'intervient que
dans 2

16
= 1

8
des cas. De plus, dans la moitié des cas, personne ne peut gagner car

soit tous les joueurs envoient la même réponse, soit 2 répondent {0} et 2 répondent
{1}.

Cependant, lorsque l'on passe à la version quantique du jeu, on découvre alors
un équilibre totalement "pur". Par exemple, si le pro�l de stratégie est s=(a,a,a,a)
avec :

a =
1√
2

cos
( π

16

)
(I + iX) +

1√
2

sin
( π

16

)
(iY − iZ)

alors l'état �nal partagé obtenu est :
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|ψ〉 =
1√
8

(
|1000〉+ |0100〉+ |0010〉+ |0001〉 − |1110〉 − |1101〉 − |1011〉 − |0111〉

)
Parmi ces 8 états, 2 sont optimaux pour chaque joueur, ce qui nous amène à

une probabilité de gain pour chaque joueur de 2
8

= 1
4
, c'est à dire le double de la

perfomance maximale en stratégie classique. Par ailleurs, on a supprimé tous les
états qui n'amenaient aucun gain pour aucun des joueurs grâce à cette stratégie
(c'est pourquoi la probabilité de gagner double).

Par ailleurs, lorsque les joueurs jouent tous la stratégie a, on obtient un réel
équilibre de Nash. En e�et, si un joueur décide de changer unilatéralement de
stratégie, il ne peut alors pas améliorer ses résultats, quelque soit la stratégie
choisie, unitaire ou non-unitaire (préservant la trace et completement positive).

Ainsi, en passant de N = 3 à N = 4, un équilibre de Nash, non atteignable
avec des stratégies classiques, émerge. Cet équilibre est aussi un équilibre optimal
et équitable, dans la mesure où le gain est le même pour les 4 joueurs. Une fois
encore, on constate que le partage d'un état intriqué et l'introduction de stratégies
quantiques permettent de surpasser les stratégies classiques.

2.5.5 Ouvertures

Une généralisation du Minority Game dans sa version quantique pour N serait
intéressante à mettre place. Comme préssenti pour N = 3, si le nombre de joueurs
est impair, la version quantique n'est pas avantagée par rapport au jeu classique.
Un nouvel équilibre de Nash apparait en revanche pour un nombre pair de joueurs,
et l'on peut étudier de plus près la stabilité de cet équilibre en fonction du nombre
de joueurs N , en introduisant di�érentes formes de décohérence, comme cela est
traité dans [15].

On pourrait également s'intéresser aux performances obtenues lorsques les
joueurs ne partagent pas un état maximalement intriqué. Chen et al. montrent
que l'on n'obtient pas d'avantage par rapport au cas classique lorsque N est im-
pair, mais que l'on peut avoir de meilleurs résultats que dans le cas classique
lorsque N est pair, même si l'on n'atteint pas d'équilibre [14].

Par ailleurs, ce jeu peut avoir des applications dans divers domaines. Une des
applications assez connue et dans le domaine de l'économie et les marchers �nan-
ciers, où l'on modélise le marché avec un Minority Game et on utilise alors ce
modèle pour gérer le transfert de bien et l'allocation des ressources [18].

58



On peut aussi étudier le jeu du point de vue de la position des joueurs entre
eux. Selon si l'on suppose que les joueurs sont en compétition ou en coopération,
les stratégies proposées peuvent évoluer. C'est ce que tente d'investiguer Linde
et al. dans [19], et d'étudier des stratégies sur la version du jeu à plusieurs tours.
Flitney & Greentree étudient quant à eux l'in�uence des coalitions sur les résultats
du jeu, notamment en comparant les résultats quantiques et classiques [16].

En�n, on peut étudier l'in�uence de l'environnement d'un joueur et de la cor-
rélation du système quantique partagé par les joueurs et voir les répercutions sur
les performances du jeu [17].

2.6 Autres jeux quantiques

2.6.1 Paradoxe de Parrondo - Parrondo's game

Nous allons, dans cette partie, présenter l'un des paradoxes les plus connus pour
son originalité et son "étrangeté" extrême : Paradoxe de Parrondo 1. Ce dernier
met en avant l'idée que deux jeux, considérés comme perdants (i.e, le joueur a une
probabilité de perdre supérieure à celle de gagner) séparément, deviennent gagnant
lorsque l'ont les associent, certes d'une manière très particulière.

Déroulement du jeu classique

Tout d'abord, nous devons exposer et présenter les deux jeux pris séparement
a�n de pouvoir expliquer le jeu de Parrondo convenablement.

� Jeu A

Ce premier jeu, l'un des plus simple, consiste au lancer d'une pièce. La proba-
bilté a�n d'obtenir "pile" (i.e., gagner) est considérée égale à pA. A l'inverse,
la probabilté d'obtenir "face" (i.e., perdre) est considérée égale à (1 − pA).
A�n que le jeu soit perdant, nous allons imposer la condition suivante (cela
revient à utiliser des pièces truquées) : pA < 1

2
.

� Jeu B dépendant du capital

Ce jeu va, quant à lui, utiliser deux pièces B et C. Ces dernières se di�éren-
cient par leurs probabilités de gagner (pB 6= pC). A�n de savoir quelle pièce

1. Juan Manuel Rodriguez Parrondo (né le 09 Janvier 1964) est un physicien espagnol de
l'Université de Complutense de Madrid
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Figure 2.6 � Jeu A

nous allons utiliser, il su�t de se réferrer au capital de gain (qui correspond
au nombre de fois gagnée moins celles perdues). En e�et, si le capital est
divisble par 3, nous choisirons de lancer la pièce B. Par contre, s'il ne l'est
pas, alors nous lancerons la pièce C.

Figure 2.7 � Jeu B

On pourrait croire que le jeu B est gagnant. Mais il ne l'ai pas. En e�et, ceci
peut être prouvé de di�érentes manières, dont celle qui utilise la notion de
chaine de Markov.

� Association des jeux A et B

Comme nous l'avons cité précédemment, l'association des deux jeux per-
dants peut amener à un jeu gagnant. Ceci peut être constaté par de simples
simulations numériques.

Nous constatons que legain tend à être négatif lorsque l'on joue les jeux A et
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Figure 2.8 � Simulations de l'associations des jeux A et B. Le couple [a,b] indique
que nous jouons a fois le jeu A et ensuite b fois le jeu B et ainsi de suite jusqu'à
qu'on ai fait 100 jeux

B séparemment. Cependant, lorsque l'on joue le couple [3,2] ou [4,2], le gain
tend à être positif et fait ainsi de lui un jeu gagnant.

� Jeu B' (dépendant de l'historique de jeu)

Une autre con�guration est également possible. Elle consiste à utiliser un
nouveau jeu B, nommée jeu B'. Il se di�érencie par la condition qui implique
l'utilisation de la pièce B ou C. En e�et, nous allons, maintenant, nous réfer-
rer par rapport aux résultats des deux parties précédentes (gagné ou perdu)
a�n de choisir la pièce B, C, D ou E. Le jeu A est identique à celui vu précé-
demment. Le principe des jeux peut être représenté de la manière suivante :

� Association des jeux A et B'

Encore une fois, lorsque l'association des jeux est accomplie, nous obtenons
un jeu gagnant. En e�et, nous pouvons constater ces résultats à l'aide des
simulations suivantes :
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Figure 2.9 � Jeu A et B'

Figure 2.10 � Simulations de l'associations des jeux A et B'. Le couple [a,b']
indique que nous jouons a fois le jeu A et ensuite b' fois le jeu B et ainsi de suite
jusqu'à qu'on ai fait 100 jeux

Déroulement du jeu quantique

� Jeu quantique dépendant du capital

Il est envisageable de transcrire ce jeu de manière quantique. En e�et, nous
pouvons représenter le jeu A et B sous la forme des circuits quantiques sui-
vants [50] :

Avec les di�érents paramètres dé�nis de la manière suivante :
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Figure 2.11 � Jeu quantique A
Figure 2.12 � Jeu quantique B

� |c〉 : qubit de registre qui représente l'état d'une pièce quantique
� |$〉 : n-qubits de registre qui représentent le gain pour chaque joueur n
� |o〉 : qutrit de registre auxiliaire qui permet de savoir si le gain est un multiple
de 3

� mod3 : Opérateur qui permet de modi�er |o〉 si le gain est un multiple de
� X, A, B1 et B2 : Portes quantiques ou opérateurs
� CID : Opérateur qui permet d'incrémenter, si |c〉 est dans l'état |1〉, ou dé-
crementer, si |c〉 est dans l'état |0〉, le capital de gain |$〉

2.6.2 Guerre des sexes

Déroulement du jeu classique

Ce jeu aborde un problème que rencontre deux conjoints : un homme et une
femme. Ces derniers voudraient partager une soirée ensemble. Cependant, l'en-
droit de rencontre n'est pas commun. L'homme veut aller voir un match de foot
tandis que la femme souhaiteriat aller à l'opéra. Ils veulent cependant vivre ce
moment à deux plutôt que seul, peu importe la destination. Les deux ne peuvent
communiquer durant leurs choix.

XXXXXXXXXXXXFemme
Homme

Opéra Foot

Opéra (α ; β) (σ ; σ)
Foot (σ ; σ) (β ; α)

Nous considérons que α, β et σ sont les gains respectifs vis à vis de la stratégie
choisie. Pour répondre aux conditions imposés parle jeu, nous devons respecter
α > β > σ . Il faut également noter que dans la notation choisie pour le tableau
(à savoir (Gain 1 ; Gain2)), le gain 1 et le gain 2 correspondent respectivement au
gain de la femme et de l'homme. L'objectif de chaque joueur est de maximiser son
gain individuel.
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Nous pouvons constater que ce jeu détient deux équilibres de Nash : (Opéra,Opéra)
et (Foot, Foot). De plus, il ne faut surtout pas que (O, P) ou (F,O) arrive. En e�et,
le gain est minimal pour cette situation et cela pour les deux joueurs.

Déroulement du jeu quantique

Voici le circuit quantique qui représente les di�érentes étapes quantiques qui
correspond au jeu [51].

Figure 2.13 � Circuit quantique : La guerre des sexes

Chaque joueur dispose d'un qubit. La stratégie "aller à l'opéra" correspond à
l'état du qubit |O〉 et "aller au foot" correspond à l'état du qubit |F 〉. Chaque
joueur détient une porte quantique qu'il peut appliqué à son qubit. Ces dernières
sont notées UA et UB.

Cette formalisation quantique est très similaire à celle vue précédemment pour
le dilemme du prisonnier. Par conséquent, nous n'énoncerons que les formules de
gain :

$A = αPOO + βPFF + σ(PFO + 0POF )
$A = αPOO + βPFF + σ(PFO + 0POF )

Ainsi, de même que le dilemme de prisonnier, les deux joueurs, homme et
femme, sont assurés d'avoir un gain maximal en appliquant une stratégie quan-
tique.

2.6.3 Spin �ip game

Le Spin Flip Game (SFG), souvent reconnu comme étant le premier jeu quan-
tique, est un jeu faisant intervenir 2 joueurs A et B, et un électron. C'est un jeu
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non coopératif où chaque joueur va chercher à gagner. Le résultat du jeu n'annoce
qu'un seul vaiqueur, et donc qu'un seul perdant. Le jeu se présente comme une
sorte de pile ou face, où les joueurs vont manipuler à 1 ou 2 reprises l'orientation
du spin de l'électron.

Principe du jeu et stratégie "classique"

Le joueur A commence par orienter le spin de l'électron vers le haut, c.a.d.
vers l'état |up〉 = |u〉. Le joueur B a ensuite deux possibilités : soit appliquer
la porte I (identité) ou X (not) au spin de l'électron dans l'état |u〉. On note
|down〉 = |d〉 = X|u〉. Ceci est pour le premier tour du jeu.

Pour le second tour du jeu, le joueur A, tout d'abord, a la possibilité à son
tour d'appliquer la porte I ou X. Ensuite seulement, le joueur B peut appliquer
la porte I ou X.

L'état de l'électron est ensuite mesuré. Comme nous le verrons plus tard, il
y a autant de chance d'obtenir le spin orienté vers le haut, qu'un spin orienté
vers le bas (simillairement au pile ou face). On suppose donc que si son spin est
orienté vers le haut, c'est à dire que l'on obtient |u〉, c'est le joueur A qui gagne.
Inversement, si le spin est orienté vers le bas, c'est à dire que l'on obtient |d〉, c'est
le joueur B qui gagne. L'inverse donne le même résultat en terme de gain.

A / B II IX XI XX

I III IIX XII XIX
X IXI IXX XXI XXX

Figure 2.14 � Portes quantiques �nales à appliquer à l'état initial |u〉 en fonction
des stratégies des deux joueurs

En appliquant chacune des portes correspondant à chacune des possibilités de
stratégies choisies par les joueurs, on obtient les états �naux suivants :

A / B II IX XI XX

I |u〉 |d〉 |d〉 |u〉
X |d〉 |u〉 |u〉 |d〉

Figure 2.15 � Etat �nal du spin de l'électron mesuré en fonction des stratégies
des deux joueurs

En suppose que si A gagne il remporte un gain de +1, et un gain de -1 si il
perd, on obtient le tableau de gain suivant pour le joueur A :
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A / B II IX XI XX

I +1 −1 −1 +1
X −1 +1 +1 −1

Figure 2.16 � Tableau de gain pour le joueur A

On remarque que le joueur A a une chance sur deux de gagner quelque soit sa
stratégie adpotée, et il en est de même pour le joueur B. On retrouve donc le jeu
du pile ou face que l'on connait usuellement ;

Utilisation d'une stratégie quantique

L'introduction d'une stratégie quantique, comme on peut s'y attendre, va ame-
ner une amélioration de la performance du joueur l'utilisant. Suppose que c'est
le joueur B qui décide de passer à une stratégie quantique. Contrairement à pré-
cédemment, le joueur B misera toujours sur un spin de l'électron orienté vers le
haut. Le joueur A gagne donc si le spin est orienté vers le bas.

Ainsi, durant le premier tour, le joueur A place toujours le spin en position
haut |u〉. A présent, le joueur B choisir d'appliquer la porte H d'Hadamard au

lieu de I ou X. Il en résulte donc l'état suivant : H|u〉 = 1√
2

(
|u〉+ |d〉

)
.

Pour le second tour, A a le choix d'appliquer la porte I ou X. Dans les deux
cas, l'état résultant reste inchangé par rapport au précédent dans la mesure où :
I(H|u〉) = X(H|u〉) = H|u〉. Le joueur B rejoue a son tour avec la stratégie
précédente, dans le sens où il ré-applique la porte H à l'état précédent, ce qui nous
donne l'état suivant : H(H|u〉) = H2|u〉 = |u〉.

Ainsi avec cette stratégie, le joueur B est assuré de gagner au jeu du pile ou
face, ou plutôt au jeu d'orientation du spin, ce qui n'est pas possible avec des
stratégies classiques. Une fois encore, l'utilisation de stratégies quantiques prouve
la puissance et l'e�cacité de travailler dans un monde quantique.
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2.6.4 Jeux quantiques restants

Nom du Résumé, nombre Références
jeu de joueurs

Jeu à 2 joueurs, Bob place une balle dans 1 sur 4
Wise emplacements. Alice pose une question fermée à
Alice Bob. S'il répond oui, Alice est satisfaite, sinon elle [24, 25, 26, 27, 28, 29]
game peut demander un dédomagement. Bob peut bouger la

balle à une place adjacente après la question d'Alice.

Quantum Jeu à 2 joueurs, un vendeur et un acheteur. Le
Bargaining vendeur négocie avec l'acheteur pour le prix : faire [30, 31, 32]

game des a�aires pour plus tard et/ou user de chantage.

Jeu à 2 joueurs, un proposeur et un répondeur.
Quantum Le proposeur doit répartir 100 unités entre lui et
Ultimatum l'autre joueur, et fait une proposition au répondeur. [20, 21, 22, 23, 69]

game S'il accepte, alors les unités sont distribuées.
S'il n'accepte pas, personne ne gagne rien.

Figure 2.17 � Tableau regroupant les derniers jeux quantiques présentés dans ce
chapitre
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Deuxième partie

Applications au domaine de l'énergie
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Chapitre 3

Sécurité et Smart Grid

Le réseau électrique (de l'énergie primaire jusqu'au consommateur �nal) ac-
tuel n'est pas durable dans le temps, tant au niveau environnemental, économique
ou encore social. Par conséquent, le développement d'un nouveau type de réseau,
réseau nommé intelligent (plus connu sous le nom de "Smart grid"), est primor-
dial. Celui-ci devra face aux di�érents challenges énergétiques. C'est ce que nous
proposons d'étudier dans ce chapitre.

3.1 Présentation du réseau intelligent ou Smart

Grid

Dans cette partie, nous allons présenter un type de réseau électrique en actuel
développement : "Smart Grid" ou réseau intelligent. Ce dernier peut être présenté
comme un réseau électrique qui utilise di�érentes technologies a�n de rendre les
opérations optimales (ou plus e�cace), que ce soit au niveau de la production,
distribution ou encore au niveau de la consommation. Ces di�érents processus
sont coordonnés de manière autonome. La promesse européenne pour 2020, a�n
de réduire de 20% des gaz à émissions de serres ; augmenter la production totale
en énergies renouvelables à hauteur de 20 % également et une réduction de 20% de
la consommation totale énergétique, pourrait être tenue et même améliorée dans
le futur avec l'implémentation d'un tel réseau.

3.1.1 Intérêts principaux d'un nouveau type de réseau

Intégration de centres de production décentralisés

La production électrique fournie par le réseau actuel dépend fortement et mal-
heureusement des ressources fossiles, qui ne cessent de diminuer. En e�et, le sys-
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tème électrique français repose sur une production électrique assez centralisée
autour de centrales très puissantes. Par conséquent, au vu de son incapacité à
accueillir un grand nombre de source d'énergie renouvelable intermittente, il est
plus que nécessaire de ré�échir à un nouveau type de réseau qui saurait répondre
à ce type de besoin. Le réseau intelligent permet d'intégrer, non seulement, des
moyens de production de grande ampleur et centralisé (par exemple des centrales
nucléaires) mais également des plus petites installations telles que les systèmes
d'énergie renouvelable où les productions venant des consommateurs eux-mêmes
(ainsi rendre possible la création de millions de micro sources d'énergie). Il faut
également noté que le réseau actuel ne permettra pas de subvenir aux besoins
électriques futurs qui vont augmenter de manière assez conséquente.

Gestion de la demande et utilisation de technologies d'informations et
de communications

Les types de réseau actuels permettent la navigation d'énergie uniquement dans
un seul sens (du producteur vers le consommateur). Tandis que le réseau intelligent
permettrait de favoriser le développement de producteurs d'énergie à petite échelle
en ayant la capacité de faire circuler l'énergie dans les deux sens.

Les consommateurs vont jouer un rôle important au sein du réseau intelligent.
Ils vont permettre d'avoir plus d'informations sur le pro�l de consommation et
ainsi ajuster la production. Ceci a�n d'atteindre une production qui s'approche
le plus de la consommation, c'est-à-dire un équilibre entre l'o�re et la demande,
et éviter les pics de demande. Dans cette nouvelle con�guration, nous pourrions
envisager une tari�cation variable de l'électricité en fonction de l'heure d'utilisa-
tion. A�n de pouvoir rendre cela possible, di�érentes technologies devront intégrer
les installations des consommateurs dont notamment les "Smartmeters". Ces der-
niers permettront de mesurer la quantité d'énergie consommée par les utilisateurs
et également avoir une fonction de régulateur sur la consommation. En e�et, le
consommateur pourra également modi�er sa demande d'électricité à l'aide des
données récoltées en temps réel.

Intégration des bornes de recharges pour les véhicules électriques

L'introduction des véhicules électriques est aussi favorisée par les réseaux in-
telligents. La communication entre le réseau et les véhicules est primordiale pour
pouvoir agir correctement. On pourrait imaginer que l'énergie stockée (mais non
utilisée par les véhicules) pourrait être utilisée en cas de besoin par le réseau élec-
trique (ce principe est nommé le V2G : "Vehicle to Grid"). Il faut noter également
que l'introduction des véhicules électriques permettrait la réduction des gaz à e�et
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Figure 3.1 � Flux d'énergie et d'information (Source ERDF)

de serre.

E�cacité et incidents sur le réseau

Par ailleurs, ce réseau permettrait également de réduire les pertes d'énergie et
de détecter plus rapidement les problèmes grâce à une prise d'information sur le
réseau complet.

3.1.2 Description du système

Nous pouvons représenter l'évolution du réseau électrique comme suit [58] :
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Figure 3.2 � Evolution du réseau électrique

La di�érence principale repose sur les �ux d'action. En e�et, le réseau in-
telligent possède un �ux de transmission d'électricité mais également d'un �ux
d'informations. Ce dernier va permettre de coordonner la production d'électricité
et la consommation réelle.

3.1.3 Di�érents secteurs a�ectés

Nous pouvons distinguer les di�érents axes, sur lesquels ce type de réseau in-
�uerait grandement, et ceci est representé dans la �gure suivante [58] :

3.1.4 Smartgrid en France

La France se place parmi l'un des pays les plus avancés dans la recherche
et le développement des applications du réseau intelligent. Cette partie visera à
présenter brièvement quelques projets déjà en cours.

Programme Linky

L'installation de plus de 35 millions de compteurs intelligent (ou communicant)
d'ici 2021 est une initiative dévelopée par ENEDIS (anciennement ERDF). Ce
projet a été lancé en 2007 et a été déployé depuis le 1er Janvier 2015. L'utilisation
d'un tel outil permettrait une gestion plus optimisée de la consommation électrique.
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Figure 3.3 � Domaines d'applications des technologies des Smartgrids

Ce dernier peut également jouer un rôle d'actionneur en décalant certains usages
des consommateurs a�n de répondre au mieux à un pic de consommation.

Sur la �gure suivante, nous pouvons voir le rôle joué par le compteur intelligent :

Ce compteur utilise le moyen de communication que l'on appelle CPL (Cou-
rant Porteur en Ligne). Ce type d'usage permet de transmettre et recevoir des
informations via les câbles électriques. Nous ajoutons simplement un signal élec-
trique (qui transporte l'information) au �ux électrique. L'Union Internationale des
Communications a opté pour le protocole de communication G3, qui plus est le
seul supportant le protocole IPv6 qui permet d'assurer via internet la gestion des
compteurs.
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Figure 3.4 � Place du compteur intelligent (Source CRE)

Projet Nice Grid : Quartier solaire intelligent

Nice GRid est un projet développé à Carros depuis 2011. Celui-ci implique
1500 consommateurs résidentiels, tertiaires et industriels dont 300 foyers et 11
clients industriels. Celui-ci est piloté par Enedis et fait partie du projet européen
Grid4EU. L'investissement total correpond à environ 30 millions d'euros.

Ce projet a pour but d'optimiser l'exploitation d'un réseau de distribution éle-
trique en incluant des sources d'énergies renouvelables (dont tout particulièrement
celle produite par les panneaux photovoltaiques). La gestion de la demande, en
faisant contribuer les consommateurs dans la boucle d'action, est également dé-
veloppée a�n de de réduire les pics de consommations au niveau local. Ce projet
vise aussi à tester les possibilités d'îlotage de ce type de réseau et d'observer son
comportement dans une telle situation.

Le système global du système est représenté ci-dessous [72] :

Le déploiement des di�érentes technologies et les di�érents tests é�ectués sont
présentés sur la �gure suivante [72] :
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Figure 3.5 � Système global

Projet GreenLys

Ce projet, dont l'investissement correspond à 43 millions d'euros, a été lancé
en 2012 par ENEDIS (et d'autres participants tels que ENGIE, Schneider, GEG
,...etc) sur les villes de Lyon et Grenoble a�n d'étudier le comportement des tech-
nonologies des Smart grids en zone urbaine et conditions réelles. Parmi celles-ci,
nous pouvons retrouver le système Linky, les outils de gestion en temps réel du
réseau, les moyens mis en place a�n d'accueillir sur le réseau les sources de pro-
ductions d'énergies renouvelables ainsi que les bornes de charges de véhicules, et
en�n les outils qui permettent les "e�acements" de consommation a�n d'équilibrer
l'o�re et la demande.

Les étapes clés du projet sont résumées ci-dessous :

Projet IssyGrid : Quartier intelligent

IssyGrid est un projet lancé en 2012 au sein de la ville de Issy-Les-Moulineaux.
ce dernier vise à tester le fonctionnement du Smart grid à l'échelle de quartier, plus
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Figure 3.6 � Déploiement des technologies

Figure 3.7 � Déroulement du projet (Source ENEDIS)

précisément ceux de Seine Ouest et Fort d'Issy. Ce système gère la consommation
et production d'énergie d'environ 2 000 habitants et 5 000 employés sur une surface
100 00 m².

Le système global peut être représenté de la manière suivante :

Celui-ci vise à gérer au mieux la consommation en incluant les nouveaux types
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Figure 3.8 � Système global (Source ISSY)

d'usage (par exemple les véhicules électriques), intégrer les sources de production
d'énergie renouvelables et optimiser la gestion de l'énergie au sein des quartiers.

Les étapes clés du projet sont résumées ci-dessous :

Figure 3.9 � Etapes clés du projetl (Source ENEDIS)
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3.1.5 Prédictions pour le futur

Voici un tableau qui résume l'évolution des "Smart Grids" qui devrait avoir
lieu [54] :

Figure 3.10 � Evolution des Smart Grids
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3.2 Sécurisation des Smart Grid

L'introduction des technologies de communication au sein des réseaux intel-
ligents permet d'améliorer le fonctionnement du système global tout en le ren-
dant plus vulnérable au cyber attaques. Par conséquent, il est plus que nécessaire
d'étudier et de rendre plus �able le niveau de sécurité au sein du réseau [54]. Les
performances des Smart Grids dépendent fortement de l'information transmise. Si
celle-ci est corrompue, les performances du réseau en sont fortement perturbées.

La sécurité n'est pas un sujet nouveau au niveau technologique. Par conséquent,
on pourrait tout simplement envisager de protéger le réseau électrique intelligent en
utilisant les mêmes moyens employés que pour Internet. Cependant cela n'est pas la
meilleure et la plus adéquate des solutions au vu des caractéristiques, complètement
di�érentes d'Internet, que présente les Smart grids. Par conséquent, il faut opter
pour de nouveaux types de cryptages d'informations.

Nous pouvons distinguer deux types de cryptage qui se di�érencie par la ma-
nière dont l'on distribue les clés de codage : clé privée et clé publique. La première,
nommée clé privée, consiste à utiliser la même clé a�n de coder et décoder le mes-
sage (l'information). Alors que la clé publique utilise di�érentes clés pour coder
et décoder le message. A partir de là, nous pouvons constater qu'en utilisant la
clé privée, nous devons impérativement se partager la clé de cryptage avant que
le message soit crypté (à l'aide d'une rencontre physique ou d'un canal sécurisé
par exemple). A l'inverse, la clé publique permet d'éviter ce partage en rendant
"publique" la clé de codage alors que celle de décodage est privée (les deux clés
sont reliées de manière mathématique). Il est cependant possible de "hacker" ce
genre de clé en utilisant des moyens sophistiqués, qui prennent, par ailleurs, un
certain de temps dépendant de la complexité numérique. Ce type de cryptage n'est
donc pas totalement �able.

Néanmoins, la théorie de l'information quantique apporte des solutions majeurs
vis-à-vis de la cryptographie. En e�et, la distribution de clés quantique semble être
un moyen adapté a�n de sécuriser au mieux les transferts d'informations, tel que
dans un Smart grid.

Dans l'article [55], il a été démontré expérimentallement que ce type de moyen
peut être envisagé a�n de répondre convenablement à la demande en terme de
sécurité, en utilisant notamment le protocole de communication sécurisé quantique
BB84 1.4
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3.3 Communiquer plus d'informations avec le Su-

perdense Coding

Une des problématiques, et un des enjeux de la recherche dans ce domaine, et
l'amélioration et l'optimisation de la qualité, de la quantité et de l'architecture des
communications mises en place pour permettre le fonctionnement e�cace et sûr
d'un système déployé sur un réseau, comme celui des Smart Grids.

Une des propositions que la théorie de l'information quantique peut formuler,
est la transmission d'information contenant elle même de l'information : c'est le
principe du Superdense Coding (voir section 1.3 pour la procédure détaillée pour
les 2 qubits). En transmettant des qubits ou des qudits (généralisation du qubit
à d états de bases) d'information issus d'un état intriqué partagé avec le destina-
taire, on peut à l'aide du protocle de Superdense Coding faire émerger un surplus
d'information par rapport à la quantité de qubits ou qudits envoyés initialement.

Pour l'étude des di�érents cas d'application proposés, nous nous placerons alors
dans un cas de communication où un certain nombre d'entités doivent communi-
quer des informations à un controlleur, ou à une autre entité de même niveau. A�n
de simpli�er la présentation, nous supposerons que deux entités A et B doivent
communiquer des informations sur leur fonctionnement à une unité S. Ce schéma
peut être adapté en ajoutant une communication bi-latérale et en ajoutant des
entités communiquantes supplémentaires, le principe restera alors le même.

Figure 3.11 � Schéma du système simpli�é de communication
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3.3.1 Communication avec 4 choix de messages

Supposons que les deux entités A et B veulent communiquer avec S, mais n'ont
besoin que de 4 messages au total. Dans ce cas, ils peuvent choisir de mettre en
place un Superdense coding à 2-qubits classique, a�n de gagner en quantité et donc
en rapidité de transfert d'information avec un rapport de 2.

Pour ce faire, il faut que A et S partagent un état de Bell |ψ1〉, c'est à dire :

|ψ1〉 =
1√
2

(
|0A0S1〉+ |1A1S1〉

)
De la même manière, B et S doivent également partager un état de Bell |ψ2〉

tel que :

|ψ2〉 =
1√
2

(
|0B0S2〉+ |1B1S2〉

)
Les 4 messages possibles que A et B peuvent communiquer sont : |00〉, |01〉,

|10〉 et |11〉. Chaque 2-qubit sera interprété comme un message lié à la production,
à un besoin d'énergie, ou à tout autre type de message pouvant être communiqué
dans un Smart Grid. Une fois le message choisi, chaque entité applique le protocole
de Superdense coding avec S :

� A manipule et envoie son qubit à S

� B manipule et envoie son qubit à S

� S reçoit le qubit de A et manipule l'état intriqué |ψ1〉 puis mesure

� S reçoit le qubit de B et manipule l'état intriqué |ψ2〉 puis mesure

Ainsi, au total, A envoie 1 qubit d'information, B envoie 1 qubit d'information,
S décode le tout et reçoit donc au total 2 × 2 qubits d'information. Nous avons
donc bien un gain de 2, dans la mesure où l'on envoie 2 "unités" d'information
pour en recevoir 4 au �nal.

Cela peut donc permettre de doubler l'e�cacité des communications en terme
de quantité d'information envoyée, et peut éventuellement permettre d'optimiser
les systèmes de type Grid en terme de réponse à une demande, ou d'organisation
interne des unités de production, du contrôle de la consommation, et de manière
générale, tous les aspects utilisant une quelconque communication.
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3.3.2 Communication générale dans un système

Dans cette sous-section, nous tenterons de présenter une manière théorique
d'utiliser le Superdense coding à 2-qubits (classique) et à n-qudits a�n de pou-
voir transmettre le message voulu avec gain d'information, tout en béné�ciant du
nombre de messages non limité pour une communication complète.

Si la variété du nombre de message voulant être transmi estM = 4, on utilisera
alors le Superdense coding classique à 2-qubits. Si le nombreM est inférieur ou égal
à 2, on ne peut réduire la quantité de qubit à envoyer, et il su�ra alors d'envoyer
le qubit correspondant au message. Si le nombre M est égal à 3, on utilisera alors
toujours le même protocole de Superdence coding avec 2-qubits, sauf que les unités
A et B ne manipuleront leur qubit que de 3 manières di�érentes pour les 3 messages
possibles.

Supposons maintenant que l'unité A ou B communiquent de manière classique
avec S, comme le feraient les composants électroniques d'un système d'informa-
tique industriel, ou comme cela s'oppère entre un microcontrôleur et des capteurs
ou tout composant éléctronique. Ils communiquent le plus souvent à l'aide de pro-
tocoles de communication très précis, utilisant des registres de données, et des
registres d'adresses par exemple, le tout en binaire. Un message sera alors envoyé
sous la forme d'une séquence de bits, et on pourra découper le message global
pour en déduire l'identi�ant de l'expéditeur, le message en lui même, la partie de
controle de la séquence, etc.

Si l'on suppose que la taille T de la séquence de bits à envoyer est paire, et
T = 2k avec k ∈ N, et si l'on veut substituer cette communication classique
par une communication utilisant le Superdense-coding, il su�ra alors de décou-
per cette séquence en k parties de 2-bits. Ensuite, pour chaque paire de bits, on
applique le Superdense coding classique à 2 qubits. Ainsi, au lieu d'envoyer 2k
bits d'information, on envoie à la place k qubits d'information, ce qui réduit la
quantité d'information transmise. Les deux communiquant A/B et S devront en
outre partager autant de systèmes intriqués pour mettre en place le Superdense
coding.

Si la taille de bits à transmettre s'avère impaire, donc T = 2k+1, avec k ∈ N, il
su�ra donc de transmettre classiquement le premier bit d'information, et ensuite
d'appliquer le même processus que ci-dessus aux 2k bits restants. Cette fois-ci, on
devra transmettre au �nal k+1 unités d'informations (1 bit ou qubit, et k qubits).

On peut imaginer aussi, à la place d'un découpage de la séquence de bits à
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envoyer, de mettre un place un protocole de Superdense coding à n-qudits en
fonction de la taille de la séquence, pour n'envoyer de l'information qu'une seule
fois, et que l'unité S ne décode l'information totale qu'une seule. Ceci nécessite
cependant de disposer d'une connaissance théorique du protocole de Superdense
coding dans le cas général d'un système à n-qudits et de pouvoir le réaliser expé-
rimentalement lorsque la taille des données à transmettre s'agrandit. On pourrait
cependant imaginer le même type de découpage que pour les 2-qubits, mais avec
n-qubits par exemple. On gagnerait alors en temps d'encodage/décodage en ap-
pliquant les portes et les mesures pour plusieurs qubits à la fois.

Les idées présentées de manière générales ci-dessus pourraient donc servir à
optimiser de manière quantitative les communications présentes dans les systèmes
de types Smart Grid. On pourrait se poser la question de la qualité et de la sécurité
des ressources partagées. Pour ce qui est de la sécurité, nous abordons le sujet
dans la sectio 3.2. En terme de qualité des données transmises, une idée possible
serait d'utiliser le domaine de la correction de code aussi appelé codes correcteurs,
notamment les codes quantiques, et tentant de retrouver le code initial à partir de
d'un code bruité, ou déterrioré, par décohérence par exemple [68].
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Chapitre 4

Allocation des ressources

4.1 Problématique de l'allocation des ressources et

théorie des jeux

"L'allocation des ressources est un concept économique qui concerne l'utilisa-
tion des ressources rares et notamment les facteurs de production (travail, capital,
matières premières) pour satisfaire à court et long terme les besoins de consom-
mation de la population [70]." Ce concept peut être associé à l'énergie, en parlant
d'allocaion des ressources énergétiques.

"Cette allocation demande, dès que l'activité économique atteint une certaine
taille et complexité, de dé�nir un mode d'arbitrage autre que la guerre ou la rapine,
et donc des institutions sociales adaptées. Cet arbitrage se fait de façon plus ou
moins libre, par le biais des prix de marché, le fonctionnement de ces marchés étant
eux-mêmes formalisés par des règles de droit ; ou par les administrations d'État, à
l'aide de règles ou de lois.

Dans un sens plus étroit, l'allocation des ressources peut concerner l'arbitrage
entre les divers facteurs de production, voire les choix et dosages à faire à l'intérieur
d'un type de facteur."

C'est dans ce cadre que l'introduction de la théorie des jeux pour arbitrer la
répartition des ressources entre les clients/joueurs prend tout son sens. En e�et,
les di�érents demandeurs vont être en concurrence pour obtenir cette ressource
rare, ou pour l'obtenir à moindre prix. Utiliser des jeux à plusieurs et surtout non-
coopératifs permettrait alors de modéliser cette situation et de pouvoir ensuite
proposer des solutions issues directement des outils développés dans la théorie des
jeux, à travers la proposition de stratégies optimales ou la recherhe d'équilibres
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par exemple.

C'est dans cette mesure que nous proposons un certain nombre de cas d'applica-
tion de jeux non-coopératifs quantiques dans un scénario d'allocation de ressources
et de gestion de production mettant en scène plusieurs acteurs en concurrence, mo-
délisés alors comme des joueurs.

4.2 Scénario basé sur le Dilemme du Prisonnier

Nous allons voir, dans cette partie, l'intérêt que pourrait avoir l'application du
dilemme du prisonnier, sous forme quantique, au sein d'un bâtiment intelligent.

4.2.1 Explication du scénario

4.2.2 Bâtiment intelligent

Imaginons un bâtiment composé de plusieurs étages (exactement 2 dans notre
cas, pour simpli�er les calculs). A chaque étage de celui-ci, une consommation
propre à l'utilisateur doit être comblée. A�n d'assurer l'alimentation des deux
consommateurs, le bâtiment dispose de deux moyens de production d'énergie.

L'un serait un moyen très important tel que le réseau d'électricité considérée
comme un réseau disposant d'une puissance pouvant combler aisément les besoins
du bâtiment à lui seul. Cependant, ce dernier fournit l'élèctricité à un prix assez
conséquent.

Le second serait le fruit d'un investissement pour l'installation d'un moyen de
production d'énergie renouvelable local. Ce dernier proposerait, par conséquent, un
coût d'électricité plus intéressant que le réseau d'électricité principal. Cependant,
ce dispositif ne permet, pas à lui seul, de combler la consommation des deux
consommateurs.

De plus, les deux consommateurs disposent de gestionnaire d'énergie. Ces der-
niers permettent de basculer entre les di�érents moyens d'apport en électricité : le
réseau principal (EDF) et le système d'énergie renouvelable.

Choix du système de production d'énergie secondaire

Nous pouvons imaginer d'utiliser des moyens de production d'énergie renouve-
lable tels que la géothermie, l'énergie solaire ou encore l'énergie du vent.
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Cependant, la géothermie semble être un moyen très di�cile à exploiter. En
e�et, ce moyen de production d'énergie depend fortement de la localisation géo-
graphique du site. Ce serait très optimiste de pouvoir penser qu'un tel système
pourrait engendrer une production d'électricité à un faible coût (en prenant en
compte les frais d'installation).

L'installation d'une éolienne ne serait, elle aussi, pas très simple et béné�que.
E�ectivement, les performances d'une éolienne dépendent fortement de la vitesse
du vent ( l'énergie est fonction de la vitesse au cube). Cette caractéristique est très
fortement détériorée par la présence d'autres bâtiments aux alentours. Ainsi, les
éoliennes sont également exclues pour la production d'énergie pour un batiment.

Par contre, l'installation de panneaux photovoltaics (PV) semble être envisa-
geable. Les contraintes de ce type de production ne sont pas très exigeantes. Nous
pouvons imaginer que les PV soient installés sur le toit du bâtiment et ainsi cap-
ter l'énergie solaire aisément. Malgré cela, une caractéristique importante des PVs
doit être prise en compte, celle de l'e�cacité ou rendement de trnasformation en
enérgie électrique. Cette dernière est très faible pour des PVs, de l'ordre de 15

Nous opterons donc pour l'installation de PVs.

4.2.3 Stratégies

Supposons que les 2 consommateurs doivent choisir entre l'électricité du réseau
principal (Grid) et celle des PVs. Pour correspondre au dilemme du prisonnier, ces
derniers ne peuvent communiquer entre eux.

Le tableau des stratégies est préenté ci-dessous :

hhhhhhhhhhhhhhhhhhUtilisateur 1
Utilisateur 2

Grid PV

Grid (3 ; 3) (0 ; 5)
PV (5 ; 0) (1 ; 1)

L'objectif de chaque joueur est de maximiser son gain individuel. Pour plus
de simplicité, nous avons choisi des valeurs arbitraires pour les gains. On pourrait
envisager de dé�nir une fonction, qui dépenderait du prix de l'électricité et du
choix de l'utilisateur, a�n de défnir le gain pour chaque joueur.

1. Stratégie (GG)
Dans ce cas, les deux utilisateurs choisissent d'utiliser le réseau principal
(EDF). Les deux joueurs ne prennent pas de risques et par conséquent optent
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pour le prix le plus élevé. Cette con�guration n'est pas celle qui optimise le
gain individuel mais elle privilégie le gain mutuel. En e�et, plus la consom-
mation est importante, plus le prix de l'électricité proposé par EDF sera
faible (ceci n'est applicable que durant les périodes où la demande n'est pas
à son maximum).

2. Stratégie (GS) ou (SG)
L'un des deux utilisateurs utilise l'énergie solaire (PV) pour satisfaire à ces
besoins électriques. Tandis que l'autre opte pour le réseau principal. Par
conséquent, la prise de risque est payante dans cette con�guration puisque le
gain est maximal. Ceci est du au fait que le PV ne peut fournir de l'électricité
à bas coût qu'à un seul utilisateur (les moyens d'investissements n'ont pas
été su�sant a�n de combler la demande de tous les utilisateurs). Par contre,
l'autre joueur sera quant à lui dans la moins avantageuse des positions. En
e�et, vu que la demande d'électricité demandée au "Grid" n'est pas impor-
tante (moins importante que celle des deux consommateurs réunis), le prix
va devenir très important (plus que dans la situation (G,G)).

3. Stratégie (SS)
Cette con�guration est la plus dangereuse. Les deux consommateurs décident
de consommer l'énergie solaire malgré que la production ne puisse combler
aux besoins des deux. Nous pourrions imaginer que, dans ce cas, un autre
système de contrôle va combler la di�érence en faisant appel au réseau (et ceci
à un coût non négligeable). Ainsi, les deux consommateurs devront payer le
coût de l'électricité venant des PVs mais également une partie supplémentaire
due au réseau. Cette con�guration met en relief le côté néfaste de l'utilisation
commune des PVs par les deux consommateurs.

4.2.4 Réalisation du jeu

Nous allons dans cette partie présenter un système qui permettrait de réali-
ser les stratégies quantiques [52]. Pour ce faire, les deux éléments principaux qui
constituent les outils que disposeraient les joueurs (utilisateurs), à savoir la porte
Ĵ et Û , seront étudiés.

Porte Ĵ

Chaque joueur détient un qubit en sa possession. ψ1 correspond au qubit détenu
par l'utilisateur 1 et ψ2 correspond au qubit détenu par l'utilisateur 2. Ces derniers
sont dans l'état |CC〉 au début du jeu. Nous utilisons l'opérateur Ĵ a�n d'obtenir
un système plus ou moins intriqué (selon la valeur de γ).
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Cet opérateur peut être réalisé de manière concrète et expérimentale à l'aide
de l'utilisation de "beam splitters" ( 4 diviseurs de faisceaux, dans le cas qui suit
ils ré�échissent 50

Ce système peut être représenté de la manière suivante :

Figure 4.1 � Opérateur expériemental J

Sur cette �gure, les "beam splitters" sont suivi de la mention BS. Kerr repré-
sente le "cross Kerr medium". Et les "phase shifter" sont nommés PS.

Les BS permettent de transformer un couple (a,b) en un couple (a',b') de la
manière suivante : (

a′

b′

)
=

(
cos( θ

2
) −isin( θ

2
)

−isin( θ
2
) cos( θ

2
)

)(
a′

b

)
L'opérateur associé est nommée B̂(θ). Si l'on applique cet opérateur aux couples

(a,b) suivants, nous obtenons :

B̂(θ)|1〉a|0〉b = cos( θ
2
)|1〉a|0〉b − isin( θ

2
)|0〉a|1〉b

B̂(θ)|0〉a|1〉b = cos( θ
2
)|0〉a|1〉b − isin( θ

2
)|1〉a|0〉b

Ainsi, si nous considérons |C〉 = |1〉|0〉 et |D〉 = |0〉|1〉, nous obtenons :

B̂(θ)|C〉 = cos( θ
2
)|C〉 − isin( θ

2
)|D〉

B̂(θ)|D〉 = cos( θ
2
)|D〉 − isin( θ

2
)|C〉
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Les "phase shifter", quant à eux, permettent d'assurer les transformations (ro-
tations) suivantes :

P̂ (φ,−φ)|C〉 = eiφ|C〉
P̂ (φ,−φ)|D〉 = eiφ|D〉

Finalement, comme la �gure l'indique, le système qui représente Ĵ peut être
dé�ni comme suit :

Ĵ = B̂4(−π
2
)B̂3(−π

2
)P̂ (θ2,−θ2)P̂ (θ1,−θ1)K̂(γ)B̂2(

π
2
)B̂1(

π
2
)

Porte Û

Contrairement au dilemme du prisonnier classique où l'on exprime directement
sa stratégie (par exemple, à l'aide de la valeur d'un bit : 0 ou 1) , la formula-
tion quantique permet de disposer d'un qubit ψ d'action sur lequel di�érentes
opérations sont possibles pour l'ensemble des joueurs. En e�et, l'ensemble de ces
opérations est dé�ni par l'opérateur Û dont la forme est rappelée ci-dessous :

Û(θ, φ)=

(
eiφcos(θ/2) sin(θ/2)
−sin(θ/2) e−iφcos(θ/2)

)
avec 0 ≤ θ ≤ π et 0 ≤ φ ≤ π/2

Ce système peut être représenté de la manière suivante :

Sur celle-ci, nous pouvons remarquer que les types d'élements utilisés pour la
porte Ĵ sont également mis en place pour pouvoir assurer la fonction de l'opérateur
Û , notament les "beam splitter" (au nombre de 2) ; les miroirs (au nombre de 2)
et les "phase shifter" (au nombre de 4). Cette fois-ci,ils sont disposés de manière
di�érente.

De plus, nous pouvons associer les di�érents élements a�n d'obtenir le resultat
souhaité pour Û :

Û(θ, φ) = P̂ (0,−φ)Ûy(− θ
2
)P̂ (φ, 0)

Avec :

Ûy(
θ
2
) = B̂(π

2
)P̂ (− θ

2
, θ
2
)B̂(π

2
)
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Figure 4.2 � Opérateur expériemental U

Ainsi, nous pouvons introduire les notions vues concernant le dilemme du pri-
sonnier pour pouvoir résoudre certains problèmes liés à la gestion d'énergie. En
e�et, l'utilisation de la théorie de l'information quantique permet de résoudre le
problème lié à ce jeu (contrairement à ce qui est fait classiquement) et par consé-
quent celui rencontré lors du scénario avec la gestion d'énergie au sein d'un bâti-
ment intelligent.

De plus, nous avons également pu constater que cette application quantique
est envisageable au niveau technique. Elle ne requiert pas des outils très évolués
mais seulement quelques éléments déja utilisés dans le monde technologique.

4.3 Scénarios basés sur le CHSH et GHZ Game

Dans un environnement de production d'énergie, comme celui d'une centrale
ou d'un réseau de production électrique, le problème de réponse à la demande et
au besoin d'énergie est un problème récurrent et prépondérant. Diverses solutions
sont donc mises en place a�n de répondre convenablement à la demande, et a�n
d'équilibrer l'e�ort demandé aux diverses unités de production du réseau.

Néanmoins, ces solutions introduisent un besoin de communication important
et de qualité pour pouvoir synchroniser les di�érentes unités de production. Dans le
cas où les unités de productions ne communiquent pas entre elles directement, elles
doivent alors communiquer avec un opérateur central qui va réguler les productions
en fonction des demandes. Voulant limiter aux maximum la communication avec
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cet opérateur central, c'est dans cette con�guration que nous proposons quelques
scénarios basés sur les jeux quantiques CHSH-Game (2 joueurs) et GHZ/W-Game
(3 joueurs) en lien avec cette problématique.

4.3.1 Scénario à deux joueurs - CHSH-Game

Notre premier scénario prend place dans un bâtiment industriel quelconque.
Ce dernier est équipé d'un système central électrique permettant de distribuer
l'énergie aux di�érentes machines industrielles. Ce système électrique globale reçoit
de l'énergie de la part de deux unités de production di�érentes. Ces deux unités
de production fournissent déjà un certain nombre de clients, et aucun d'entre eux
ne peut être consacré exclusivement à notre bâtiment. De ce fait, les deux unités
de production se relayeront pour répondre aux besoins du bâtiment industriel
en question. On suppose que chaque unité de production peut envoyer à chaque
itération ou demande 30MW au bâtiment.

Chacune des unités de production ne possède qu'une vision restreinte du sys-
tème global. En e�et, deux capteurs locaux du système renseignent respectivement
chaque unité sur le besoin en énergie du système global. Les capteurs associés à
chaque unité de production n'observent pas la même partie du système global dans
notre cas. De plus, les unités de production ne peuvent en aucun cas communiquer
entre elles une fois mises en route. Chaque capteur envoie une information binaire
à l'unité de production associée pour lui informer s'il y a un besoin ou non d'éner-
gie. Il peut arriver qu'un seul capteur détecte le besoin en énergie du bâtiment,
mais il peut arriver également que les deux capteurs saisissent cette information
et vont donc avertir les unités de production de cela. En revanche, si un besoin
existe en énergie, on est certain qu'un des 2 capteurs au minimum le détectera.

De son coté, le système global centralise l'énergie reçue de l'exterieur avant de
la redistribuer à ses di�érents sous-systèmes internes. Le système de centralisation
ne peut accepter l'énergie que d'une seule unité de production à la fois, de par son
dimensionnement. La réception simultanée d'énergie de la part des deux unités
entraine une surcharge au niveau de la centralisation et peut ammener vers une
déterrioration du matériel. La coordination des unités de production devra donc
intégrer cette contraine pour ne pas endommager et destabiliser le système.

Si, tout de même, il arrive que les deux unités de production fournissent en
même temps de l'énergie, un système dit "auxiliaire" s'assurera de protéger le
système en absorbant le surplus de charge qui aurait pu causer une déterioration
du matériel. Cette unité auxiliaire intervient également en cas de non réponse à la
demande du système global. Il s'assurera alors de fournir l'énergie qu'une unité de
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production aurait dû fournir en attendant que les unités de production reprennent
convenablement leur rôle. Son comportement peut donc s'apparenter à celui d'une
batterie, que l'on chargerait ou déchargerait en fonction des réponses des unités
de production aux demandes renseignées par les capteurs.

C'est alors dans ce contexte que l'on propose d'introduire le CHSH-Game (voir
2.1 pour une dé�nition détaillée) comme jeu quantique a�n de permettre la co-
ordination des unités de production pour répondre au mieux aux demandes, en
prenant compte les contraintes énoncées ci-dessus.

L'arbitre envoyant les questions sera ici modélisé par les capteurs locaux. Cha-
cun des capteurs enverra donc sa question au joueur auquel il est lié. Les deux
joueurs seront e�ectivement les deux unités de production. Le système global mo-
délisera l'arbitre qui reçoit les réponses de la part des unités de production sous la
forme d'information ou d'énergie produite directement. Le système global se charge
ensuite de répartir l'énergie reçue, ainsi que d'avertir éventuellement l'unité auxi-
laire en cas de réponses non satisfaisantes (surcharge ou non-production). L'unité
auxiliaire n'est alors pas considérée comme un joueur à part entière.

Le principal problème sera donc de trouver moyen de coordonner les unités
de production pour minimiser la fréquence d'occurence de cas indésirables (non-
production ou surcharge), et ainsi solliciter au minimum l'unité auxiliaire. Une
fois la stratégie trouvée, on pourra dimensionner l'unité auxiliaire convenablement.
La suite de cette section s'attardera donc sur les résultats qu'o�re les stratégies
classique et quantiques utilisées pour résoudre le CHSH-Game.

Dans la suite de notre propos, on notera P1 et P2 les deux unités de production,
on notera P0 l'unité auxiliaire. La question {1} de la part du capteur indique qu'il
y a besoin d'énergie, la question {0} qu'il n'y en a pas besoin. La réponse {0}
indique que l'unité ne produit pas, tandis que la réponse {1} indique que l'unité
de production va produire de l'énergie.

On dé�nit également un certain nombre de pénalités qui vont correspondre à
la fréquence de cas indésirables. On dé�nit alors une pénalité de non-production,
qui se produit lorsqu'un capteur au minimum informe d'un besoin et qu'aucune
des unités de production ne choisit de produire. On dé�nit ensuite une pénalité de
surcharge, lorsque les deux unités de production vont produire simultanément. On
dé�nit e�n une pénalité de surproduction lorsque les deux capteurs n'informent
d'aucun besoin et que l'une des deux unités de production envoie tout de même
de l'énergie. A�n d'évaluer la stratégie de manière globale, on dé�nit une pénalité
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Figure 4.3 � Schéma explicatif du système complet

globale comme une moyenne pondérée des trois pénalités ci-dessus. On donne 2
fois plus d'importance et de gravité à la pénalité de surcharge par rapport aux
deux restantes, car elle peut engendrer une déterrioration du matériel. On aura
alors la relation suivante :

penaliteglobale =
1

2
penalitesurcharge +

1

4
penalitenon−production +

1

4
penalitesurproduction

Meilleure stratégie classique

Dans la recherche de la meilleure stratégie permettant de minimiser les cas
indésirables, que l'on appellera aussi pénalité, toutes les stratégies classiques ne
sont pas acceptables. En e�et, les stratégies classiques où un joueur répond la
même chose quelque soit la question ne peut être acceptable dans notre cas. En
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e�et, si une unité de production choisit de ne jamais produire quelque soit le besoin
renseigné par son capteur, alors elle devient inutile et l'autre unité de production
ne pourra pas assurer le besoin à elle toute seule, comme supposé au départ. Le
cas où une unité choisit de toujours produire est également problématique dans la
mesure où cela peut multiplier les risques de surcharge, de production lorsqu'il n'y
en a pas besoin, et cela n'est pas possible par hypothèse de départ.

Il ne nous reste donc que les stratégies dans laquelle la réponse à une question
est le complément de la réponse au complément de la question. Si l'on note p1(x)
et p2(x) la réponse apportée par l'unité de production P1 et P2 respectivement, à
la question x, alors on liste les di�érentes stratégies classiques restantes par ligne :

Stratégie 1 : p1(0) = 0 , p1(1) = 1 , p2(0) = 0 , p2(1) = 1

Stratégie 2 : p1(0) = 0 , p1(1) = 1 , p2(0) = 1 , p2(1) = 0

Stratégie 3 : p1(0) = 1 , p1(1) = 0 , p2(0) = 0 , p2(1) = 1

Stratégie 4 : p1(0) = 1 , p1(1) = 0 , p2(0) = 1 , p2(1) = 0

On remarque tout d'abord que le cas de surcharge est inévitable quelque soit
les stratégies, et qu'il arrive dans 1

4
des cas.

On observe ensuite que la stratégie 2 amène à une production de la part de
P2 alors que les deux capteurs envoient l'information {00}. De plus, dans le cas
où le second capteur avertit d'un besoin d'énergie, les deux unités de production
renverrons {00} ce qui nous amène dans un cas de non-production. On peut établir
les mêmes remarques pour la stratégie 3.

Pour ce qui concerne la stratégie 4, elle est plus problématique dans la mesure
où lorsque les deux capteurs envoient l'information {00}, les unités de production
produisent un cas de surchage, ce qui va obliger l'auxiliaire P0 à absorber une
quantité double à celle qu'il doit absorber lorsqu'un il y a une surcharge et qu'un
capteur au minimum informe d'un besoin en énergie.

On en conclut alors que la meilleure stratégie est la stratégie 1, stratégie consis-
tant à produire lorsqu'on informe d'un besoin, et ne pas produire dans le cas
contraire. On évite alors le cas de non-production, car les deux unités de pro-
duisent pas uniquement lorsque les deux capteurs leur informent d'un non besoin
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d'énergie par la question {00}. On évite également le cas de surproduction de ce
fait.

On présente alors ci-dessous, l'évolution des di�érentes pénalités en fontion
du nombre de tours de jeu e�ectués. On remarque alors que la pénalité de non-
production et celle de surproduction est nulle pour cette stratégie. La pénalité de
surcharge est bien de 25% comme en théorie, tandis que l'on converge bien vers
12.5% pour la pénalité globale.

Figure 4.4 � Evolution de la pénalité de surcharge (gauche) et globale (droite)
au �l des itérations pour la stratégie classique optimale

En ce qui concerne le comportement de l'unité auxiliaire P0, il devient avec
cette stratégie classique uniquement uni-directionnel, dans la mesure où il ne doit
fournir en aucun cas de l'énergie au système, et ne fait qu'absorber l'énergie de
surcharge pour préserver le système. Modéliser cette unité P0 par une batterie
ne serait alors pas le meilleur choix. Une des solutions possibles est d'imaginer
l'auxiliaire P0 comme un relais qui couperait le circuit avec une des unités de
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production en cas de surcharge, à la place d'absorber cette énergie. Ci-dessous est
représenté la sortie de l'auxiliaire P0. Une valeur négative implique que l'auxiliaire
absorbe le courant de surcharge.

Figure 4.5 � Evolution de l'utilisation de l'auxiliaire P0 au �l des itérations pour
la stratégie classique optimale

Résultats de la stratégie quantique

Dans cette sous-section, on sintéressera à la performance de la stratégie quan-
tique du CHSH appliquée à notre problème d'allocation de ressources, en étudiant
la nature des pénalités atteintes.

Dans cette stratégie, les deux unités de production vont donc partager un état

de bell |ψ〉 = 1√
2

(
|00〉 + |11〉

)
. L'unité P1 sera assimilée au joueur A, et l'unité

P2 sera assimilée au joueur B, selon les notations posées en section 2.1. Chaque
joueur va donc appliquer sa stratégie en fonction de l'information reçue par son
capteur, et mesurer son qubit dans la base convenable.
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Si l'on cherche à déterminer analytiquement les di�érentes valeurs de pénalités,
il serait plus simple, vu le nombre de cas possibles, de lister les réponses possibles et
leur probabilité en fonction des questions, et d'ensuite pouvoir établir de manière
simple le calcul.

Question Réponse Probabilité pour Type de
une réponse pénalité

{00} {00} / {11} 1
4
*1
2
*0.8536 Aucune / Surcharge

{00} {01} / {10} 1
4
*1
2
*0.1464 Surprod / Surprod

{01} {01} / {10} 1
4
*1
2
*0.8536 Aucune / Aucune

{01} {00} / {11} 1
4
*1
2
*0.1464 Nonprod / Surcharge

{10} {01} / {10} 1
4
*1
2
*0.8536 Aucune / Aucune

{10} {00} / {11} 1
4
*1
2
*0.1464 Nonprod / Surcharge

{11} {01} / {10} 1
4
*1
2
*0.8536 Aucune / Aucune

{11} {00} / {11} 1
4
*1
2
*0.1464 Nonprod / Surcharge

Figure 4.6 � Probabilités d'occurence de la réponse en fonction de la question, et
pénalité associée

Après calcul à partir du tableau, on se rend en e�et compte des di�érentes
valeurs des pénalités théoriques :

surcharge =
1

8
∗ 0.8536 +

3

8
∗ 0.1464 = 0.1616

nonproduction =
3

8
∗ 0.1464 = 0.0549

surproduction =
2

8
∗ 0.1464 = 0.0366

globale = 0.5 ∗ 0.1616 + 0.25 ∗ 0.0549 + 0.25 ∗ 0.0366 = 0.103675

En observant les résultats de la simulation, on voit en e�et que les pénalités
convergent vers ces valeurs. On en déduit surtout que la pénalité de surcharge
est nettement inférieure pour la stratégie quantique par rapport à la stratégie
classique. Les pénalités de non-production et de surproduction ne sont pas nulles,
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Figure 4.7 � Evolution de la pénalité de non-production (gauche) et de surpro-
duction (droite) au �l des itérations pour la stratégie quantique

mais très faibles tout de même. Au �nal, on obtient une meilleure minimisation de
la pénalité globale avec la stratégie quantique.

En ce qui concerne l'unité auxiliaire P0, elle n'agit plus maintenant comme unité
qui absorbe seulement, mais dans les cas de non-production, l'unité devra produire
de l'énergie. On peut alors cette fois-ci la modéliser sous la forme d'une batterie
qui se charge et décharge respectivement en cas de surcharge/surproduction et de
non-production. Etant donné que les cas de surcharge et surproduction sont plus
fréquents que les cas de non-production, la batterie va avoir tendance à plus se
charger que se décharger, ce qui assure bien le fait que la batterie soit chargée
et opérationelle lorsqu'il faudra fournir de l'énergie en cas de non-production des
unités P1 et P2.
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Figure 4.8 � Evolution de la pénalité de surcharge (gauche) et globale (droite)
au �l des itérations pour la stratégie quantique
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Figure 4.9 � Evolution de l'utilisation de l'auxiliaire P0 au �l des itérations pour
la stratégie quantique
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4.3.2 Premier scénario à 3 joueurs - GHZ-Game

Dans cette partie, nous proposons un scénario analogue à celui présenté pour
2 joueurs (4.3.1), faisant intervenir cette fois ci 3 joueurs et donc modélisé à l'aide
du GHZ-Game (voir section 2.2).

Nous nous plaçons toujours dans la cadre d'une structure ou un bâtiment in-
dustriel relié à des producteurs extérieurs. Ce bâtiment est relié alors à 3 unités de
productions. Les unités peuvent fournir la même puissance à notre bâtiment, mais
aucune unité ne peut être consacrée aux besoins de notre bâtiment. Les 3 doivent
donc être coordonnées pour répondre au mieux à la demande.

Chaque unité de production dispose toujours d'un capteur local et indépendant
aux autres ayant une vision restreinte sur les besoins du bâtiment en énergie.
Chaque unité ne peut, en outre, communiquer avec les autres unités de production.
Il peut arriver que seul un capteur détecte le besoin en énergie du bâtiment, mais il
peut arriver également que plusieurs capteurs saisissent cette information et vont
donc avertir les unités de production de cela. En revanche, si un besoin existe en
énergie, on est certain qu'un des 3 capteurs au minimum le détectera.

La bâtiment est toujours limité en terme de puissance recevable simultanément.
Ce dernier dispose d'une unité centrale d'alimentation qui se charge de répartir
l'énergie issue des trois unités aux sous-systèmes ayant un besoin. Si plus d'une,
c'est à deux ou trois, unités de production produisent en même temps, l'unité
centrale n'est pas dimensionnée pour cette charge, ce qui peut induire une détério-
ration du matériel. De la même manière que précédemment, une unité auxiliaire
sera là pour absorber la puissance supplémentaire d'une ou deux unités selon le
cas de �gure, pour protéger la structure. Il aura également pour but de fournir de
l'énergie lorsqu'aucune unité ne répondra à une demande informée par les capteurs.

On cherchera alors à coordonner les unités de production pour produire lorsque
la demande est renseignée par les capteurs, ne pas produire lorsqu'il n'y a pas de
besoin, et éviter de produire simultanément, ceci a�n de solliciter au minimum
l'unité auxiliaire noté P0. On dénote aussi les 3 unités de production par P1, P2 et
P3.

On dé�nit aussi, comme dans le cas précédents, des pénalités qui nous per-
mettent de connaitre la fréquence d'occurence de cas indésirables (non production,
surcharge, ...) et de pouvoir en déduire ensutie les répercutions sur l'auxiliaire P0.
On dé�nit alors une pénalité de non-production qui se dé�nit par le nombre de fois
où les unités de production n'ont pas produit (réponse {000}) alors que les capteurs
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ont averti d'un besoin en énergie, sur le nombre total d'itérations du protocole. On
dé�nit la pénalité de surproduction, qui intervient lorsque l'on produit alors qu'il
n'y a pas de demande. La pénalité de surcharge, sûrement la plus importante, qui
donne une indication sur la proportion de cas où deux ou trois unités de produc-
tion envoient simultanément leur production, ce qui peut entrainer une surcharge
du système. En�n, on dé�nit une pénalité globale, nous permettant d'avoir une
apréciation globale du système, telle que :

globale =
1

2
surcharge+

1

4
nonproduction+

1

4
surproduction

On propose alors, dans ce contexte, d'utiliser le GHZ-Game pour solutionner ce
problème d'allocation de ressources. L'arbitre envoyant les question sera modélisé
par les 3 capteurs envoyant une information binaire de besoin d'énergie aux unités
de production. Par exemple, la question {010} signi�e que seulement le second
capteur a détecté le besoin en énergie du système. De ce fait, les 3 joueurs, ne
pouvant communiquer entre eux, seront les 3 unités de production P1, P2 et P3. Par
exemple, la réponse {110} signi�e que les deux premières unité vont produire mais
pas la troisième (cas de surcharge). En�n, les 3 joueurs renvoient leur réponse à
l'arbitre, qui sera cette fois-ci modélisé par l'unité centrale qui reçoit et redistribue
l'énergie dans le système global du bâtiment. C'est l'unité centrale qui se charge
en suite de solliciter l'unité auxiliaire convenablement, ce qui place ce dernier en
dehors du GHZ-Game, et n'est donc pas considéré comme un joueur à part entière.

Meilleure stratégie classique

On s'intéresse alors dans cette sous-section à la meilleure stratégie classique
pouvant etre mise ne place par les 3 joueurs, de telle sorte à minimiser au mieux
les pénalités, et principalement la pénalité globale. Toutes les stratégies ne sont
pas envisageables pour les 3 joueurs, et cela est dû au contexte d'application du
GHZ-Game. En e�et, aucune unité de production ne peut etre consacrée à notre
système, cela implique qu'aucun joueur ne peut adopter la stratégie de toujours
répondre {1}. De plus, chaque unité doit produire de l'énergie pour le système,
donc la stratégie de toujours répondre {0}. Il ne reste alors que les 8 stratégies
possibes suivantes :

Stratégie 1 : p1(0) = 0 , p1(1) = 1 , p2(0) = 0 , p2(1) = 1 , p3(0) = 0 , p3(1) = 1

Stratégie 2 : p1(0) = 0 , p1(1) = 1 , p2(0) = 0 , p2(1) = 1 , p3(0) = 1 , p3(1) = 0
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Stratégie 3 : p1(0) = 0 , p1(1) = 1 , p2(0) = 1 , p2(1) = 0 , p3(0) = 0 , p3(1) = 1

Stratégie 4 : p1(0) = 0 , p1(1) = 1 , p2(0) = 1 , p2(1) = 0 , p3(0) = 1 , p3(1) = 0

Stratégie 5 : p1(0) = 1 , p1(1) = 0 , p2(0) = 0 , p2(1) = 1 , p3(0) = 0 , p3(1) = 1

Stratégie 6 : p1(0) = 1 , p1(1) = 0 , p2(0) = 0 , p2(1) = 1 , p3(0) = 1 , p3(1) = 0

Stratégie 7 : p1(0) = 1 , p1(1) = 0 , p2(0) = 1 , p2(1) = 0 , p3(0) = 0 , p3(1) = 1

Stratégie 8 : p1(0) = 1 , p1(1) = 0 , p2(0) = 1 , p2(1) = 0 , p3(0) = 1 , p3(1) = 0

On remarque tout d'abord quelque soit la stratégie, on ne peut empêcher les cas
de surcharge avec cette stratégie. Pour rappel, les cas de surcharge interviennent
lorsque les réponses de la part des unités de productions sont : {011}, {101}, {110}
ou {111}. On a alors 50% de pénalité de surcharge quelque soit la stratégie.

La meilleure stratégie classique sera donc celle qui minimise les autres pénalités
(non-production et surproduction). En e�ectuant une analyse comme fait dans le
scénario à 2 joueurs, on en conclut que c'est la stratégie 1 qui est la meilleure.
Cette stratégie consiste en e�et à répondre la question envoyée par l'arbitre. Ainsi,
si le capteur avertit d'un besoin, l'unité produira à chaque fois, et inversement, s'il
n'y a pas de besoin averti par son capteur, alors l'unité ne produira pas. Avec cette
stratégie, on annule totalement les pénalités de non-prduction et de surproduction.
Ceci nous amène donc à une pénalité globale de 25%.

En ce qui concerne le comportement de l'unité auxiliaire P0, il devient avec cette
stratégie classique uniquement uni-directionnel, dans la mesure où il ne doit fournir
en aucun cas de l'énergie au système, et ne fait qu'absorber l'énergie de surcharge
pour préserver le système.On se retrouve alors dans la même con�guration que
pour 2 joueurs. L'auxiliaire P0, étant donné qu'il ne fournit à aucun moment de
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Figure 4.10 � Evolution de la pénalité de surcharge (gauche) et globale (droite)
au �l des itérations pour la stratégie classique optimale

l'énergie, doit être modélisé par système qui ne se contenterait que d'absorber et
d'utiliser autrement cette énergie pour ne pas la perdre. On pourra alors imaginer
relier cet auxiliaire vers un autre système demandant de l'énergie, rendant alors
P0 comme un redirigeur de surplus de production.
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Figure 4.11 � Evolution de l'utilisation de l'auxiliaire P0 au �l des itérations pour
la stratégie classique optimale

Stratégie quantique du GHZ-Game

Dans cette sous-section, on sintéressera à la performance de la stratégie quan-
tique du GHZ appliquée à notre problème d'allocation de ressources, en étudiant
la nature des pénalités atteintes.

Dans cette stratégie, les trois unités de production vont donc partager un état
|ψ〉 :

|ψ〉 =
1

2

(
|000〉 − |011〉 − |101〉 − |110〉

)
.

L'unité P1 sera assimilée au joueur A, l'unité P2 sera assimilée au joueur B,
et l'unité P3 sera assimilée au joueur C selon les notations posées en section 2.2.
Chaque joueur va donc appliquer sa stratégie en fonction de l'information reçue
par son capteur, et mesurer son qubit dans la base convenable.
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Si l'on cherche à déterminer analytiquement les di�érentes valeurs de pénalités,
on peut utiliser le même raisonnement que celui mené pour le scénario à 2 joueurs.
Après études des cas, en fonction de la question et de la réponse, et calcul des
probabilités, on obtient alors les valeurs suivantes :

nonproduction = 4 ∗ 1

8
∗ 1

8
=

1

16
= 0.0625

surcharge = 6 ∗ 1

8
∗ 1

4
+ 16 ∗ 1

8
∗ 1

8
=

7

16
= 0.4375

surproduction = 0

globale =
7

32
+

1

64
+ 0 =

15

64
= 0.234375

On remarque alors que la probabilité de non-production est supérieure à celle
que l'on obtient avec une stratégie classique, mais que cela reste assez faible. Pour
le cas de suproduction, il n'intervient dans aucun des deux cas. Cependant, nous
avons une légère amélioration de la pénalité de surchage, qui était de 0.5 pour
le cas classique. Ceci nous amène alors à une amélioration de la pénalité globale
associée à la stratégie quantique.

En�n, en ce qui concerne l'unité auxiliaire P0, elle peut être modélisée sous la
forme d'une batterie qui se charge et décharge respectivement en cas de surcharge
et de non-production. Etant donné que les cas de surcharge sont plus fréquents
que les cas de non-production, la batterie va avoir tendance à plus se charger
que se décharger. Ce désavantage assure cependant que la batterie soit chargée
et opérationelle lorsqu'il faudra fournir de l'énergie en cas de non-production des
unités P1, P2 et P3.
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Figure 4.12 � Evolution de la pénalité de non-production (gauche) et de surcharge
(droite) au �l des itérations pour la stratégie quantique
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Figure 4.13 � Evolution de la pénalité de globale (gauche) et de l'utilisation de
l'auxiliaire P0 au �l des itérations pour la stratégie quantique
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4.3.3 Second scénario à 3 joueurs - W-Game

Pour ce dernier scénario, nous nous placerons dans l'habitation d'un particulier.
Celui-ci a fait le choix d'être un peu plus autonome que les autres consommateurs,
et de disposer de sources d'énergie alternatives. Ainsi, il va disposer de trois sources
d'énergie au total : le réseau électrique national (Grid), une association de pan-
neaux photovoltaïques (PPV), et une mini-éolienne (EOL).

Le consommateur désire installer un système qui va gérer les trois sources, et
les faire participer à tour de rôle pour exploiter l'énergie de chacun, et ne pas
user d'une source en particulier. De plus, on doit pouvoir gérer la disponibilité de
chaque source, notamment des énergies renouvelables.

Le système que nous proposons réagira comme suit. A chaque tour, au maxi-
mum 2 sources seront choisies par le système. En e�et, s'il y a du vent et du soleil,
on choisira alors les deux sources PPV et EOL, ce qui nous permet de ne pas payer
et utiliser le Grid. S'il n'y a pas de vent et du soleil, on utilisea les sources PPV et
Grid. S'il n'y a pas de soleil mais du vent, on utilisera les sources EOL et Grid. S'il
n'y a ni vent, ni soleil, on n'utilisera que le Grid. Ce dernier cas nous intéressera
moins dans la mesure où c'est le cas qui concerne la majorité des consommateurs
en France.

Ainsi, si l'on retient les 3 premières possibilités, le système choisira à chaque
fois 2 sources parmi 3. C'est dans ce contexte que l'idée d'associer ce système de
régulation de production au W-Game prend tout son sens. En e�et, dans le W-
Game, l'arbitre choisit aléatoirement 2 joueurs parmi 3 pour jouer au CHSH Game
en �n de compte. Dans notre cas, c'est le système d'alimentation de l'habitation
qui va choisir 2 sources parmi 3. La présence de vent et/ou de soleil peut être vue
comme aléatoire dans un sens, ce qui rapproche le fonctionnement du système et
du W-Game.

Les 3 sources vont donc partager un état quantique de type |W 〉, et l'un des
joueurs sera mi de côté en fonction de l'état météorologique. Ensuite, on pourra
dé�nir les conditions de gain a�n de satisfaire au mieux les besoins en utilisation
des batteries associées aux énergies renouvelables, et ceci doit être ensuite traduit
par l'utilisation de stratégies quantiques permettant de tendre vers des meilleurs
résultats. Ainsi, si l'on change la condition de gain, la stratégie quantique du
CHSH-Game ne serait
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4.4 Scénario basé sur le Minority Game

Un autre scénario que nous présentons dans cette section, permettant de mettre
en application les résultats de jeux quantiques, est un scénario basé sur le Mino-
rity Game (voir section 2.5). Le problème prend toujours place dans un contexte
d'optimisation de l'allocation des ressources en fonction des unités de production
et des unités consommatrices.

Prenons place alors dans un bâtiment abritant 4 entreprises. Chaque entre-
prise possède un étage du bâtiment, et chaque étage est isolé énergétiquement des
autres : l'énergie demandée et reçue est donc propre à chaque entreprise. On dénote
par E1, E2, E3 et E4 les quatres entreprises, qui constituent les consommateurs.

Du côté producteur, on dispose de deux sources : le réseau électrique et une
association d'un certain nombre de panneaux photovoltaïques. On notera alors
par Grid et PPV, respectivement, les deux sources citées à l'instant. On considère
également que la source PPV est plus avantageuse par rapport au Grid, de par
le prix principalement, et que donc les entreprises vont tenter d'en béné�cier au
maximum à la place du Grid. En�n, la source PPV n'est dimensionnée que pour
répondre aux besoins d'une seule entreprise.

L'utilisation du Minority Game pour cette situation intervient dans la mesure
où toutes les entreprises vont vouloir utiliser la source PPV en priorité. On propose
alors une stratégie quantique basée sur la version quantique du Minority Game à
4 joueurs (voir section 2.5.4) permettant de gérer l'attribution de l'énergie solaire
aux di�érentes entreprises.

Tout d'abord, les 4 entreprises vont partager un état quantique intriqué a�n
de pouvoir appliquer la stratégie quantique. Chaque entreprise possède donc un
qubit de l'état |ψ〉 dé�nit par :

|ψ〉 =
1√
2

(
|0E10E20E30E4〉+ i|1E11E21E31E4〉

)
A chaque tour du jeu, sachant que chaque tour est indépendant des autres,

l'entreprise qui désire jouer au jeu, et donc qui veut pouvoir béné�cier de la source
PPV, va appliquer une stratégie quantique (une opération unitaire) sur son qubit,
puis le mesurer et l'envoyer directement au système gérant la source d'énergie so-
laire. Aussi l'entreprise qui choisit de ne pas "tenter sa chance" avec la source PPV
et choisit le Grid ne va pas agir sur son qubit et ne va pas le mesurer ni l'envoyer
au système gérant le PPV : son comportement peut s'apparenter à uniquement
appliquer l'identité sur son qubit.
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La stratégie quantique optimale pour 4 joueurs, comme présenté en section
2.5.4, est notée a et est dé�nie par :

a =
1√
2

cos
( π

16

)
(I + iX) +

1√
2

sin
( π

16

)
(iY − iZ)

Le système gérant l'attribution de l'énergie solaire reçoit alors les valeurs mesu-
rées pour chaque joueur et va donc délivrer l'énergie solaire au joueur minoritaire.

Si les 4 entreprises choisissent de participer au jeu, l'énergie sera donc délivrée
à la seule entreprise minoritaire. Si toutes les entreprises répondent toutes la même
réponse, ou si deux entreprises répondent {0} et deux autres répondent {1}, alors
aucune des entreprises ne recevra de l'énergie du PPV.

Si 3 entreprises choisissent de participer au jeu, l'énergie sera donc délivrée à la
seule entreprise minoritaire. Si les 3 entreprises répondent toutes la même réponse,
alors aucune de ces 3 trois entreprises ne recevra d'énergie solaire.

Si seulement 2 entreprises choisissent de participer au jeu, alors le système
solaire délivera de l'énergie à l'entreprise qui aura envoyé {1} alors que l'autre a
envoyé {0}. On peut supposer que les entreprises ne connaissent pas le protocole de
décision du système PPV lorsque deux joueurs jouent. De même, si les 2 entreprises
répondent la même réponse, alors aucune de ces 2 entreprises ne recevra d'énergie
solaire.

Dans le cas où les 4 entreprises jouent, comme détaillé en section 2.5.4, si
les 4 entreprises jouent la stratégie quantique a, alors chaque entreprise a 25%
de chances d'obtenir de l'énergie de la part des panneaux photovoltaïques. Cette
stratégie quantique permet une e�cacité et une équité entre les entreprises, et on
ne peut faire mieux avec une stratégie classique (12.5% en classique).

Si l'on se place dans le cas où une entreprise choisit dès le départ d'utiliser le
Grid, c'est à dire que 3 entreprises vont jouer au Minority Game pour la source
PPV, c'est alors un nouveau cas de �gure non étudié dans la partie théorique de
présentation du jeu. En e�et, les 4 joueurs partageront toujours l'état intriqué |ψ〉,
même si un des joueurs ne participe pas. Cependant, le qubit du joueur qui ne joue
pas ne sera ni modi�é, ni mesuré. Les trois autres joueurs vont alors appliquer leur
stratégie quantique car ils ont décidé de jouer. Si l'on suppose que c'est la première
entreprise qui ne joue pas, alors on obtient alors l'état �nal |ψ3〉 après application
des stratégies, tel que :
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|ψ3〉 = I ⊗ a⊗ a⊗ a|ψ〉 =
1√
2

(
|0〉(a|0〉)(a|0〉)(a|0〉) + i|1〉(a|1〉)(a|1〉)(a|1〉)

)
Or, en utilisant l'expression de a, on peut établir que :

a|0〉 =
1√
2

[(
cos
( π

16

)
− i sin

( π
16

))
|0〉+

(
sin
( π

16

)
+ i cos

( π
16

))
|1〉
]

a|1〉 =
1√
2

[(
sin
( π

16

)
+ i cos

( π
16

))
|0〉+

(
cos
( π

16

)
+ i sin

( π
16

))
|1〉
]

En injectant ces résultats dans l'expression de |ψ3〉, on obtient alors un état
équivalent à :

|ψ3〉 ∼
1

4

(
|0000〉+|0001〉+|0010〉+|0011〉+|0100〉+|0101〉+|0110〉+|0111〉+|1100〉

+|1101〉+ |1110〉+ |1111〉+ |1000〉+ |1001〉+ |1010〉+ |1011〉
)

Les trois joueurs E2, E3 et E4 vont donc mesurer leur qubit et l'envoyer au
PPV. Ainsi, le premier qubit n'est pas à considérer dans l'état global partagé par
les 4 joueurs lors de la mesure, mais seulement les 3 derniers. Le lecteur pourra
alors remarquer que chaque joueur dispose de la même probabilité de gain qui
est de 4

16
= 1

4
= 25%, qui est alors la même que celle obtenue lorsque 4 joueurs

choisissent de jouer pour la source PPV.

Si l'on se place maintenant dans le cas où 2 entreprises vont jouer au Minority
Game pour la source PPV, c'est aussi un nouveau cas de �gure non étudié dans
la partie théorique de présentation du jeu. Comme précédemment, les 4 joueurs
partageront toujours l'état intriqué |ψ〉. Si l'on suppose que ce sont les deux pre-
mières entreprises qui ne jouent pas, alors on obtient alors l'état �nal |ψ2〉 après
application des stratégies, tel que :

|ψ2〉 = I ⊗ I ⊗ a⊗ a|ψ〉 =
1√
2

(
|00〉(a|0〉)(a|0〉) + i|11〉(a|1〉)(a|1〉)

)
On remplace alors l'expression de a|0〉 et de a|1〉 dans l'équation ci-dessus ce

qui nous donne un état équivalent à :
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|ψ2〉 ∼
1√
8

(
|0000〉+ |0001〉+ |0010〉+ |0011〉+ |1100〉+ |1101〉+ |1110〉+ |1111〉

)
Les trois joueursE2, E3 et E4 vont donc mesurer leur qubit et l'envoyer au PPV.

Ainsi, les deux premiers qubits ne sont pas à considérer dans l'état global partagé
par les 4 joueurs lors de la mesure, mais seulement les 2 derniers. On rappelle que
pour 2 joueurs, c'est le joueur qui envoie 1 alors l'autre a envoyé 0 qui est considéré
comme gagnant par le système d'attribution du PPV. On pourra alors véri�er que
chaque joueur dispose de la même probabilité de gain qui est de 2

8
= 1

4
= 25%,

qui est alors la même que celle obtenue lorsque 4 ou 3 joueurs choisissent de jouer
pour la source PPV.

Ainsi, la source énergétique que constitue cette association de panneaux solaires
pourra grâce à ce "protocole" répartir l'énergie équitablement entre les étages de-
mandant de l'énergie. En recevant les mesures de la part des joueurs engagés dans
la partie à un tour donné, il saura combien de il y a joueurs, qui ils sont, comment
déterminer s'il y a une minorité ou non, et qui est le minotaire. L'avantage d'in-
troduire une stratégie quantique permet aux joueurs d'atteindre des probabilités
de gain supérieures à une stratégie classique basique. L'intrication joue encore une
fois un rôle prépondérant dans ce processus. On supprime également la nécessité
de disposer d'une unité centralisant toutes les demandes des clients, puis commu-
niquant avec la source PPV, puis ensuite seulement attribuant arbitrairement ou
aléatoirement (jet de dés par exemple) l'énergie à une entreprise.
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Conclusion

Synthèse des résultats

A la �n du projet, nous sommes arrivé à un résultat satisfaisant, que l'on peut
étudier en deux temps.

Tout d'abord, et c'est ce qui fait l'objet de la première partie du rapport, nous
avons pu introduire un certain nombre de protocoles de communication quantique,
et établir un état de l'art assez fourni et détaillé des jeux quantiques les plus
répandus.

Dans la seconde partie, nous avons pu saisir les enjeux du futur de l'énergie
en terme de communication dans les Smart Grid notamment, et concernant le
problème d'allocation de ressources et de sécurité. Nous avons pu à ce titre proposer
5 scénarios di�érents mettant en scène un système énergétique et un jeu quantique
permettant de modéliser et de proposer une résolution quantique du problème.

En�n, certaines pistes proposée au cours du projet n'ont pas pu être dévelop-
pées par manque de temps et de moyens matériels. Nous les présentons alors dans
la dernière sous-section 4.4 du rapport, a�n de garder une trace écrite de ces idées,
et de pouvoir les développer par la suite, par nous même, ou permettre à d'autre
scienti�ques de s'approprier ces idées.

Bilans personnels

Bilan personnel - Hamza

C'est un projet qui fut intéressant pour moi sous divers aspect. Il me permit
de découvrir de nouveaux jeux quantiques, et donc d'agrandir notre culture dans
ce domaine. Cela pourrait nous donner des idées et des perspectives pour des tra-
vaux de recherches futurs, dans ce domaine ou dans un autre. Le projet me permit
également de lier cette discipline, qu'est la théorie de l'information quantique, à
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une application et un cas concert d'implémentation. J'ai également pu apprendre
à travailler des collègues d'autres spécialités, et à m'exprimer de manière claire
pour établir une connexion entre les disciplines. En�n, cela m'a aussi permit de
développer mes connaissances dans le domaine de l'énergie et de la physique quan-
tique.

Bilan personnel - Ismaël

Ce projet s'est révélé très enrichissant dans la mesure où il nous a permis d'avoir
une approche concrète de notre futur métier d'ingénieur. En e�et, le respect des
délais, la prise d'initiative et le travail en équipe seront des aspects essentiels
de notre futur métier. Au terme de ce projet, nous avons acquis de nombreuses
connaissances ou compétences nouvelles concernant la théorie des jeux ainsi que
sur les principes de gestion d'énergie. Nous avons pu enrichir nos connaissances sur
le principe des réseaux électriques actuels et futurs. Ce projet, qui allie des compé-
tences informatiques et énergétiques, nous a également permis de faire "réellement"
de la recherche pure. En e�et, le sujet était, dès le départ, très ambitieux et mais
nous avons pu constater par la suite qu'il n'était pas sans utilité. Les recherches
scienti�ques s'accentuent énormément sur ce nouveau type d'application.

Poursuite et ouvertures

L'un des sujets le splus intéressants que nous n'avons pas eu le temps de déve-
lopper, est de trouver une alternative à la communication bas débit implémentée
présentée dans l'article [53] de Mr. Fei Gao entre autres, qui nous a rencontré pour
nous faire part de cette problématique. L'idée était de remplacer cette communi-
cation par une communication quantique.

D'autre part, nous aurions aimé pousser plus loin l'étude des multiplexeurs
quantiques, et de voir si une application au monde de l'énergie ne serait pas pos-
sible, notamment à des �n de communication où d'implémentations dans des sys-
tèmes électroniques.

Un sujet moins en rapport avec l'énergie mais qui nous intéresse, et de pou-
voir développer un protocole de Superdense Coding pour les qutrits, et d'éven-
tuellement voir l'in�uence du type d'intrication paratagé sur les performances du
Superdense coding.

En�n, on pourrait imaginer une application concrète du protocole quantique
de téléportation ou de sécurité (BB84 - B92) à des �ns de sécurisation des données
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par exemple. Une idée aussi survenue en �n de projet est d'envisager d'utiliser les
algorithmes de Grover et de Deutsch-Jozsa pour optimiser les temps de calculs liés
au algorithmes gérant le domaine énergétique.

Nous espérons que nos travaux serviront d'inspiration aux chercheurs, ingé-
nieurs et techniciens a�n d'implémenter, repenser, améliorer et déduire de nou-
velles technologies et systèmes qui faciliteraient la vie de l'être humain sur notre
Terre.
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