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Introduction

Depuis I'émergence de cette nouvelle discipline que ’on appelle physique quan-
tique, la communauté scientifique n’a cessé de consacrer une partie de ses efforts
a comprendre, investiguer, observer, théoriser, modéliser et implémenter les idées
liées & ce domaine d’étude.

De cet effort, et par analogie & la théorie de 'information, est née au fur et a
mesure la théorie de I'information quantique, base de ce que 'on appelle parfois
informatique quantique. Jusqu’ici, nous n”avons, en tant qu’étudiants, approché
cette science que du point de vue mathématique et quelques peu physique, mais
en tant que personnes extérieures a cette science. Dans ce projet, nous tentons de
nous placer du coté de cette théorie de I'information quantique pour obsever le
"monde" extérieur de la science, et plus particuliérement celui de I’énergie.

Nous vous présentons alors notre travail effectué dans le cadre de I’Unité de
Valeur TO52 pour Hamza JAFFALI, et TX54 pour Ismaél NOUNOUH, sous la
forme de ce rapport divisé en deux parties. Dans la premiére partie, nous nous
intéressons a la partie théorique, en présentant tout d’abord les principaux proto-
coles de communication quantique, et dans un second temps un état de ’art des
jeux quantiques existants dans la littérature. Dans la seconde partie, nous tente-
rons d’entrapercevoir le futur de la gestion d’énergie a travers les Smart Grid et
I'information quantique notamment, et nous tenterons de proposer des scénarios
d’application des jeux quantiques a une problématique d’allocation de ressources
et de gestion de la production. Nous terminerons ce rapport par un bilan person-
nel, une synthése ainsi qu'une ouverture sur d’éventuelles pistes a envisager pour
la suite.
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Communication et Jeux quantiques



Chapitre 1

Communication quantique

Cette section a pour principal but d’apporter quelques notions élémentaires
concernant la théorie de 'information quantique. Pour ce faire, nous définirons,
tout d’abord, les principales différences qui résident entre I'informatique classique
et quantique. Nous présenterons par la suite un certain nombre de protocoles
quantiques célébres. Pour plus d’approfondissement, vous pouvez consulter notre
rapport consacré aux bases de la théorie de Uinformation quantique [11].

1.1 Bases de la théorie de 'information quantique

Comme chacun d’entre nous le sait, en informatique classique, I'information
la plus simple transmise par un ordinateur est le bit (Bynary digit). Ce dernier
correspond a la quantité minimale d’information d’'un message et est 'unité de
mesure de base en informatique. Celui-ci ne peut valoir que 0 ou 1. La manipulation
des bits s’effectue par nos ordinateurs au moyen de processus physiques simples et
véhiculants des informations binaires : vrai/faux, on/off, 0/1,...etc.

Cependant, la théorie de I'information quantique introduit un nouveau "concept".
En effet, le bit classique va étre remplacé par un bit quantique (nommé qubit).
L’information porté par cette entité pourrait correspondre & la polarisation d’un
photon ou encore a I'orientation du spin d’un électron. Le qubit représente un sys-
téme quantique a 2 états de base : |0) et |1). Pour distinguer les états quantiques
des états classiques, une convention a été introduite dans les années 1930 par le
physicien Paul Dirac!.

1. 1902-1984 11 est considéré comme 'un des "péres" de la mécanique quantique et il a aussi
prévu l'existence de 'antimatiére.

10



Pour un qubit [¢), on notera :

[¥) = al0) +5[1)

« et B étant des nombres complexe, a, 8 € C. Ainsi |a|? et |3|? correspondent,
respectivement, aux probabilités pour |[¢)) de se trouver dans les états |0) ou |1)
avant d’avoir été mesurés. De plus, |a]? + |3]2 = 1.

De fait, la principale différence avec un bit classique est que le qubit a la
capacité de se trouver dans une infinité d’états entre |0) et |1).

1.1.1 Postulats quantiques

Pour plus de clarté, nous allons exposer les 3 postulats principaux de 'infor-
matique quantique, & savoir :

[] Postulat de I’état d’un systéme : Les états d’'un systéme quantique sont
des éléments d’un espace vectoriel aussi appelé espace de Hilbert noté H.
Les états du sytéme quantique d’un qubit sont les éléments d’un espace a
deux dimensions, engendrés par les états de base |0) et |1). Notre espace est
ici fini, il est donc plus simple d’utiliser une repésentation matricielle :

- () ()

) = alo) + 511) - ()

De plus, la norme d’un vecteur peut étre défini par :

et ainsi :

1] = V() = Va2 + 32
Avee (W) = (a B) (g)

(] Postulat de la mesure : Le point important & retenir est qu’effectuer une
mesure transforme le qubit. Si nous avons un état |[¢)) = «|0) + 5|1) et
que l'on effectue une mesure sur celui-ci alors dans ce cas [))=|0) ou |1),
autrement dit le qubit [¢)) a été projetté dans la base {|0),|1)}. Imaginons
que la mesure nous donne le résultat |0) et bien il est maintenant impossible
d’effectuer la moindre opération sur I'état |¢)) car la mesure a modifié notre
état et I'a transformé en [¢0) = |0). Il est alors impossible de retirer des
informations supplémentaires sur ce qubit.
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[] Postulat de I’évolution : L’évolution d’un systéme quantique fermé, c’est a
dire sans interaction extérieure, est décrit par une transformation unitaire.
Cette évolution de I'état provient de 'application d’un opérateur linéaire,
nommé l'opérateur d’évolution, qui est un opérateur unitaire (préservant la
norme). Prenons un état |¢)) d’un systéme quelconque au temps ¢, et bien
cet état est lié a état |¢') du systéme au temps ¢y par 'opérateur d’évolution
U qui dépend seulement du temps entre ¢, et ts.

[¢) = Ul)

1.1.2 Exemples d’opérations sur les qubits

La manipulation de qubits se fait a I’aide d’opérateur unitaires, en tant qu’opé-
rateurs d’évolution, pouvant étre représentés par leur matrice unitaire, qui est une
généralisation des matrices orthogonales aux complexes. Nous présentons alors ci-
dessous les principales matrices unitaires permettant de manipuler les qubits. Ces
portes seront réutilisées tout au long du rapport.

Porte quantique X ou NON (NOT) : La matrice de I'application NOT dans

la base |0), |1) est :
01
=)

Cette matrice permet d’effectuer les tranformations suivantes :

X[0) = [1) et X[1) = [0)

Porte quantique Y : La porte Y est définie par la matrice : Y = (? BZ) dont

la table de vérité est :
0) — 1)
1) — —i|0)

Porte quantique Z : La porte Z est définie par la matrice : Z = <(1) _01) ou

opérateur de flip dont la table de vérité est :

0) = 10)
1) = =1

12



Porte quantique de Hadmard ou H : La porte de Hadamard est définie par

e T — L _ 1
la matrlce.H_Ti(X+Z)__2

VR
— =

_11) dont la table de vérité est :

22(10) + 1)
1) = (o) — [1))

. o . cosf) —siné
Porte quantique Uy : La porte Uy est définie par la matrice : Uy = <sin0 cos 0 >

, rotation d’angle 6, dont la table de vérité est :

|0) — cos(0)]
|1) — cos(0)|

1.2 Téléportation quantique

Nous allons voir, dans cette partie, un exemple d’application possible en utili-
sant les concepts de la théorie de I'information quantique.

1.2.1 Formulation du probléme

Un agent secret (ou pas) remet & Anne une enveloppe (ici, le qubit) qui contient
un message (I’état du qubit) trés important destiné & un autre agent, Benoit situé
a quelques kilométres de la (mais cela pourrait étre des milliards de kilometres).
L’agent demande a Anne de ne pas prendre connaissance du message (état inconnu
du qubit) et, n’ayant pas confiance dans les services postauzx, de ne pas envoyer
Penveloppe o Benoit (c’est-a-dire ici, de ne pas envoyer le qubit en lui méme,
mais seulement l'information qu’il contient). Dans ces conditions comment Anne
parviendra-t-elle & transmettre le message o Benoit ?

Remarque 1.2.1. Nous pouvons remarquer que la notion de téléportation abordée

et est un transfert dinformation et non pas de matiere.

1.2.2 Circuit quantique
1.2.3 Protocole quantique

Dans tout ce protocole, nous supposons qu’Anne et Benoit se sont rencontrés
précédemment et se sont partagé a I’amiable un systéme a deux qubits intriqué,
plus exactement ’état de Bell (qui nous le rappelons est défini par |¢Be”>:\%(]00>+

|11))). De plus, Anne détient un deuxiéme qubit dont ’état lui est inconnu [t4,) =

13



Anne : Ay

Benoit : B

b

Anne : A |1) @ E
by
Premier qubit de |5g0) 5 E
Second qubit de |Bgo) X2 yAZ! |v)
) ) ) ) )
o) 1) [abe) |13) |14)

FIGURE 1.1 — Circuit de téléportation

a|0) + 5|1), qui par ailleurs veut étre transmis a Benoit (nous parlons bien, ici, de
I’état du qubit). Nous obtenons donc un systéme a 3 qubits dont I’état est décrit
par :

1
) = [ © 1) = —(al0) + AIL)(00) + 111)
A1) |42 )

(1000) +[011)) + B(|100) + [111))} avec u

|A1A2B)

1
= E{a

1. La premiére étape de la téléportation consiste a appliquer la porte C-Not sur
le systéme a 2 qubits constitué par la paire des qubits que détient Anne :
Ajq et Ay. Ainsi, Anne obtient :

91) = —={a(l000) +[011) + F([10) +[101))}

2. Ensuite, la deuxiéme étape consiste a envoyer le premier qubit d’Anne, noté
Ay, sur une porte de Hadamard. De fait, 1’état [1)1) devient :

|12) = %{a(|000> +[100) + [011) +[111)) + 3(]|010) — [110) +]011) — |101))}

= %{|00>(04\0>+ﬁ\1>)+!01>(a\1>+ﬁl0>)+!10>(a|0>—5!1>)+\11>(a!1>+5!0>)

Ici, nous pouvons voir que ’état du qubit inconnu est complétement déter-
miné par I'état du systéme a 2 qubits défini par |A;As). Ce phénoméne est
dia a lintrication quantique.

3. Anne mesure 'état du syteéme |A; As) et transmet le resultat de cette mesure,
appelé mesures de Bell, a Benoit par n’'importe quel moyen de communication
(ex : telephone,...) : cette étape montre bien que la relativité n’est pas remise
en question dans le principe de téléportation.

14

Benoit



4. Benoit regoit le résultat d’Anne noté |ajas). Il effectue enfin P'opération
Zm X% avec "Z" et "X" les ortes logiques quantiques définies précédems-
ment, sur son qubit. Le résultat de cette manipulation donnera, avec certi-
tude, 'état du qubit inconnu noté |A;).

1.3 Principe du Superdense coding & 2-qubits

Notre second exemple d’application de I'intrication pour la communication sera
le Superdense coding. Ce moyen de communication introduit pour la premiére fois
en 19922, permet de mettre en place un codage et une transmission des informa-
tions plus "dense” que les protocoles classiques. En effet, le principe est le suivant :

Alice et Bob partagent initialement [’état de Bell Byy : chacun d’entre eux pos-
sede un qubit de cet état intriqué. Comment Alice peut elle transmetire deux bits
classiques d’information a Bob, en ne lut envoyant qu’un seul qubit ?

Alice voudrait donc transmettre a Bob I'un des état basiques suivant : |00),
|01), |10) et |11). Les étapes du protocole de Superdense coding sont les suivantes :

— Alice choisit les 2 bits qu’elle veut transmettre

— En fonction de ces derniers, elle agit sur son qubit appartenant a I’état de
Bell partagé

— Alice envoie son qubit de I’état de Bell aprés manipulation

— Bob réceptionne ce qubit, et applique alors une porte a tout le systéme
intriqué

— L’état de base a 2 qubits ainsi récupéré correspond aux 2 bits choisis par Anne

En fonction de I'état de base a 2 qubits choisi par Alice, la manipulation sur
le premier qubit de [yo = \%(\OO} +|11)) sera différente :

Choix de Anne Manipulation associée sur [y

100) I
01) X,
110) Z
I11) (ZX),

Il en resulte donc la transformation suivante, en fonction de chacun des choix

de Alice.
2. C. H. Bennett and Stephen J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992)
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00) - 100y +[11)) L L(j00) +[11)) = |ewr)
01) - L(00) +[11)) T L(J10) +[01) = |ws)
10) - 00y +[11)) D5 L(j00) — [11) = |ws)
11) = 200y + [11)) 2 L(jo1) — [10) = |ws)

Une fois son qubit manipulé, elle 'envoie & Bob. Il posséde donc désormais
Iétat intriqué dans son intégralité. Il applique alors la porte inverse de la porte
génératrice des états de Bell & savoir : une porte ¢-NOT controlée par le premier
qubit, suivie d’une porte de Hadamard sur le premier qubit également.

Bob applique donc ce circuit-ci :

‘ ) , 2 bits transmits
Qubit envoyé par Alice —1

Qubit possédé par Bob —§

V

FIGURE 1.2 — Circuit appliqué par Bob pour décoder

C’est, a la sortie de ce circuit que I'on retrouve ’état initialement choisi pour
étre transmit par Alice. Vérifions cela pour chacun des cas de figure :

c—NOT
e

jwi) 25(100) +[10) 5 3[(10) +[1)|0) + (j0) = [1))]0) ] = |00)
we)  ——— (01 +[11)  — 3[(0)+[1)L) + (o) = [1)[1)] = [01)
ws)  ———  5(100) = [10))  — 5[ (|0) +[1))[0) = (|0) = [1))[0) ] = [10)
wi)  ——— (00 = [11) = 5[ (0) + 1)) = ([0) — )] = [11)

Ainsi, Alice peut en effet transmettre deux bits d’information qu’elle doit avoir
préalablement choisi, en n’envoyant qu’un seul qubit au destinataire Bob. Il y a
donc un réel "gain" d’information en utilisant ce processus.

1.4 Protocole BB8&4

Afin d’étudier la protocole BB84 2, nous nous placons ici dans le cadre d’un
codage a clé privée.

L’information transmise par Alice vers Bob prendra la forme de photons, dont
la polarisation sert de support au codage de 'information. On introduit donc les

3. C. H. Bennett et G. Brassard en 1984
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états de base de polarisation d’'un photon, en leur associant chacun la valeur d’un
qubit :

=) = 10)
1) =11)

Alice dispose en fait d'un emmeteur, “un par un”, de photons, muni d’un po-
lariseur lui permettant de polariser horizontalement ou verticalement ce photon,
codant ainsi le |0) ou le |1). Bennett et Brassard proposent alors d’introduire une
nouvelle base de polarisation dans laquelle les polariseurs sont inclinés de -45 ° par
rapport a la base précédente. Les états possibles du photons seront donc :

N\ (I=)—=11) =10)
) (I=)+ 1) =11)

S-S5l

De ce fait, le qubit |1) pourra étre codé de 2 maniéres différentes : soit par
la polarisation |1), soit par la polarisation |,7). Pour savoir dans quelle base de
polarisation on travaille, on introduit la notation @ pour la base de polarisation
horizontale/verticale, et ® pour la base de polarisation a 45 °.

Ainsi, un photon polarisé | ) aura une probabilité de 1 d’étre le résultat de la

mesure du photon dans la base ®, mais une probabilité de % dans la base @, car

112 1
|7§|—§-

1.4.1 Exemple de transmission d’un seul qubit

Supposons qu’Alice veuille transmettre un qubit |0) en polarisant un photon
avec un polariseur orienté au hasard @ ou ®. Ce méme photon est intercepté par
un espion, que ’on nommera Eve, qui en mesure la polarisation dans la base &.
On cherche a savoir qu’elle est la probabilité pour qu’il mesure bien |0).

Eve utilise donc la base & pour la mesure.

— Si Alice utilise la base @ pour polariser son photon, alors Eve mesurera |0)
avec une probabilité de 1.

— Si Alice utilise la base ® pour polariser son photon, elle enverra donc le pho-
ton polarisé |\). Comme [\) = \%(]—)) — |1)), le qubit a une chance sur deux
d’étre projeté sur 'un des vecteurs de base de la base de mesure &. Eve mesurera
alors |0) avec une probabilité de 3.

En supposant, qu’Alice ait autant de chance de choisir I'une ou 'autre des deux
bases de polarisation, c’est a dire une chance sur deux de choisir ¢ ou ®, on peut
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calculer la probabilité qu’Eve mesure |0) sur le photon intercepté.

Soient les événements A : “Eve mesure |0)”, B : “Alice choisit la base ®” et
C : “Alice choisit la base ®”. Comme les événements B et C forment un systéme
complet d’événements, d’aprés la formule des probabilité totales, nous avons donc :

p(A) =p(ANB)+p(AnC)

D’ou d’aprés les formule des probabilités conditionnelles :

p(A) = p(B) x pp(A) + p(C) X pc(4)
Or on sait que p(B) = p(C) = pc(A4) = 3 et que pp(A4) = 1. On obtient alors

le résultat suivant :

1 1 3

1
A =5 g5 =]

L’espion Eve a donc 75% de chances de mesurer |0) pour un photon
codé initialement |0) par Alice dans une base choisie au hasard.

Introduisons maintenant, encore un fois, une nouvelle base de polarisation. Au
lieu cette fois ci de tourner la base @& d’un angle de 45°, nous effectuerons une
rotation de cette méme base @ mais d’un angle . On défini ainsi les deux vecteurs
de base, |0) et |#,) de cette nouvelle base vérifient :

|0) = cos(0)| =) +sin(0)[1) = [0)
[61) = sin(0)|=) — cos(0)[1T) = [1)

Il sera utile pour la suite de relier dés a présent les vecteurs de cette nouvelle
base que 'on appellera ©. En utilisant les relations déja établies entre les 2 bases
@ et ® on obtient :

|—) = cos(0)|6) +sin(9)|6.)

1) = sin(6)0) — cos(0)[61)
_ cos(f) —sin(0) cos(#) + sin(0)
_ sin(f) 4 cos() sin(f) — cos(0)

On sait qu’a présent Eve utilise donc la base © pour la mesure.

6) + 16.)

6) + 16.1)
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— Si Alice utilise la base @ pour polariser son photon, alors Eve mesurera |0)
avec une probabilité de cos?(6).
— Si Alice utilise la base ® pour polariser son photon, alors Eve mesurera |0)
_ 0)—sin(0 .
avec une probabilité de (M\/;m())2 = 1 —sin(6) cos(0).
En supposant qu’Alice ait toujours autant de chance de choisir I'une ou l'autre
des deux bases de polarisation @ ou ®, on peut calculer la probabilité p(6) qu’Eve

mesure |0) sur le photon intercepté :

p(h) = % x cos®(6) + % X (% — sin(#) cos(6))

On linéarise cette expression a l'aide des formules de trigonométrie usuelles :

p(h) = i X (cos(26) + 1) + % X (% - %sin(%))

Aprés simplification, on trouve :

p(f) = 3(2 + cos(260) — sin(26))

Il serait maintenant intéressant de chercher pour quel angle optimal 6 tel que
la probabilité pour Eve de mesurer |0) est la plus élevée. Il suffit en effet de trouver
pour quelle valeur de # on atteint la maximum de la fonction p(@). Aprés étude de
la fonction, on trouve que pour un angle 6 = %” la fonction atteint son maximum

p(7r) = 22 ~ 85%.

L’espion Eve a donc 85% de chance au maximum de mesurer |0) dans
la base © pour un photon codé initialement |0) par Alice dans une base
choisie au hasard parmi @ et ®.

Supposons maintenant qu’Alice et Bob aient leur polariseurs orientés dans la
méme direction, mais que le photon, émis initialement par Alice dans ’état |0) soit
intercepté par 'espion Eve. Celui-ci mesure la polarisation avec un choix aléatoire
d’orientation entre @ et ® : quelle la probabilité qu’Eve altére I'information de
départ, c’est a dire, quelle est la probabilité que Bob recoive le photon
dans l’état |1)?

Pour répondre a cette question, dans le fond promordiale en cryptographie
quantique, il apparait important dans un premier temps de lister toutes les com-
binaisons de choix de base pour Alice, Bob et Eve :
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Alice Eve Bob

1. S S S
2. 3] ® S
3 X ® ®

4. & S ®

Soit 1’événement D : “Bob recoit la photon dans I'état [1)”. On se propose de
calculer la probabilité de I'événement D en fonction de chaque cas de figure figu-
rants ci-dessus.

— Si la base utilisée par Alice et Bob et la méme que celle utilisée par Eve, alors
la polarisation du photon ne sera pas altérée. Ceci se manifeste dans les cas 1 et
3, d’ou :

p1(D) =ps(D) =0

— Si la base utilisée par Alice et Bob différe de celle utilisée par Eve, il y a
une probabilité d’ qu’Eve mesure et modifie I'état du qubit [0) en |1), du fait de
la différence de base entre Alice et Eve. Ensuite, Bob a lui aussi une probabilité
d’% de modifier le qubit, du fait de la différence entre sa base et celle d’Eve. On
retrouve ce cas de figure dans les cas 2 et 4, d’ou :

Au final, en supposant que chacun de ces 4 cas ait la méme probabilité de se
réaliser, on trouve :

b(D) = {(p1(D) + pa(D) + pa(D) + p4(D))

D’ou
1

p(D) =4

Bob a donc 1 chance sur 4 de mesurer le mauvais qubit transmit,
sachant qu’un espion a antérieurement intercepté ce dernier.

1.4.2 Exemple de transmission de plusieurs qubits

On s’intéresse maintenant au cas ou Alice tente de transmettre plus qu’un seul
qubit d’information a Bob. Pour transmettre plusieurs qubits a Bob on supposera

20



qu’Alice les transmet un par un. De plus, pour chaque qubit, Alice choisit aléa-
toirement la base de polarisation, toujours entre & et ®. Alice transmet alors les
photons polarisés en fonction du message binaire, et de la base choisie pour chaque
bit.

Lorsque Bob recoit les photons, il procéde de son coté a la méme opération
qu’Alice : il choisit aléatoirement, pour chaque qubit, la base de mesure entre @ et
®. Une fois les différents choix effectués, il communique publiquement la liste de ses
choix & Alice. Alice compare alors les deux listes de choix de bases de polarisation.

Alice transmet alors, toujours publiquement, quelles sont les positions des qu-
bits de la séquence pour lesquels la base de polarisation est la méme. Pour ces
positions 14, Alice et Bob auront bien les méme valeurs de qubits, puisque pour
ces qubits 14, ils auront utilisés le méme choix de codage.

Ainsi Alice et Bob peuvent utiliser ces qubits “siirs” pour constituer une clé
privée de codage.

La théorie étant énoncée, voyons un exemple pratique de transmission de 6
qubits entre Alice et Bob :

Alice Bits & transmettre 1 0 0 1 1 0
Choix de base e ® P ® ® &)
Polarisation envoyée [1) [N\ |[=) [ | |—)

Bob Choix de base e & ® ® D D
Polarisation mesurée 1) 1) \) | =) |—=)

Bits lus 1 1 0 1 0 0

Alice et Bob Bits acceptés ? v X v X v
Message secret 1 1 0

La clé de codage secréte ainsi générée et partagée par Alice et Bob sera donc :
110. Ainsi, dans cet exemple, Alice et Bob ont engendré 3 bits. Ils peuvent en fait
engendrer autant qu’ils veulent en utilisant ce systéme. En moyenne, Bob devinera
le bon positionnement de la base dans 50% des cas. Alice devra donc envoyer en
moyenne 2n photons pour générer un code a n bits.

Mais, a présent, comment s’assurer que ce message n’a pas été intercepté par
un espion 7

Si un espion intercepte un photon, et que Bob a choisi la méme base qu’Alice :
I'espion a donc 25% de chance de modifier la valeur du qubit, et donc 75% de
chances de ne pas modifier cette valeur*.

4. voir Ezemple de transmission d’un seul qubit
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On préléve alors 700 bits pour étre comparés entre Alice et Bob. Attardons-
nous sur 2 questions intéressantes

Quelle est la probabilité que, si un espion mesure tous les qubits transmis, aucun
des 700 bits ne soit modifié par cette interception ¢

Pour un qubit, la probabilité que I’espion ne le modifie pas aprés interception
est de %. Alinsi, si on transmet 700 qubits, la probabilité d’en modifier aucun tout
en espionnant est de (2)70 ~ 3,5.107%8.

La ligne a un tauz d’erreur physique de 3%. Quel pourcentage de qubit ’espion
peut-il intercepter pour le taux d’erreurs di a ['interception ne soit pas supérieur
au tauz physique ?

Sl y a un taux d’erreur physique sur la ligne, Alice et Bob peuvent accep-
ter que 700 x 3% = 21 qubits soient mal transmis. Sachant que I'espion a 25%
(1 chance sur 4) de modifier un qubit intercepté, si il ne veut pas créer plus de
21 erreurs, il doit se limiter a observer 21 x 4 = 84 qubits. Donc Eve ne pourra
regarder que 2t = 12% du message.

Ainsi, pour s’assurer que le canal de transmission n’est pas “écouté”, il suffit a
Alice et Bob de prendre un échantillon de bits acceptés par Bob et Alice, et donc
pour lesquels Alice et Bob possédent exactement les bases de polarisation. Alice et
Bob se communiquent cet échantillon 14, et ils comparent chacuns le résultat de la
transmission par rapport a la I’échantillon initial : fous les bits doivent étre iden-
tiques. Une seule différence signe la présence d’un intrus ou d’une erreur physique
sur la ligne. L’intrusion n’est avérée que si le taux de bits qui différent dans le
processus de reconnassance est supérieur au taux d’erreur physique. Si le nombre
de bits échangés est suffisamment grand, le fait qu’ils soient tous indentiques cor-
respond & la quasi-certitude de n’avoir pas été écouté.

Si une erreur est détectée sur cette transmission de vérification, Alice et Bob
devront recommencer un nouveau processus et retester la sécurité de la ligne.

1.5 Multiplexeurs

1.5.1 Fonctionnement classique

Les multiplexeurs (ou plus connu sous le nom de MUX) font partie intégrante
des moyens de communication en électronique. Ils permettent effectivement de
sélectionner, sur un ensemble d’informations récoltées (en entrée du MUX), un ou
plusieurs types de données & transmettre (en sortie du MUX). Ceci est réalisé a
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'aide notamment d’un auxiliaire de controle (par exemple un ou plusieurs bits
de controle dont 'état est 0 ou 1) qui permet de définir les données d’entrées a
transferer en sortie du MUX. Il faut noter que cette manipulation est effectuée afin
de condenser I'information pour n’obtenir plus qu’une seule voie en sortie.

Voici un exemple de MUX qui passe de 4 entrées a une seule sortie [71] :

o0 wrF

Talga2

.' 1= i0
& n _—
T

74Ls1 ] L1

TaLEN

FIGURE 1.3 — Exemple de MUX 4 :1

Sur cet exemple, nous pouvons constater que les portes classiques NON, ET
et OU sont utilisées. Nous avons en entrée (A, B,C, D) = (1,1,0,1) et les bits de
controle sont a 1'état (Cp, C7) = (0,1). Ceci nous permet d’obtenir 'information
détenue par le bit C en sortie. Il nous suffit de changer ’état des bits de controle
afin de déterminer 'entrée a séléctionner.

1.5.2 Portes quantiques sur plusieurs qubits

Il nous parait utile de rappeller les principales portes quantiques agissant sur 2
qubits dont la porte ¢-NOT, SWAP et CSAWP (plus connu sous le nom Fredkin).
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Porte ¢-NOT

La porte ¢-NOT, ou controlled NOT est souvent utilisée pour remplacer la
porte NOT. Elle fonctionne de la maniére suivante :

Etat d’entrée Etat de sortie

100) |00)
101) |01)
110) |11)
111) |10)

La porte c-NOT agit en effet sur un systéme a deux qubits. Le premier bit sert
de controdle (bit de contrile) et le second bit (bit cible) subit ou pas une négation,
en fonction de I'état du bit de contréole. Sachant comment ’opérateur c-NO'T tran-
forme les vecteurs de la base |00), |01), |10}, |11), on peut alors le représenter par
une matrice, dans cette méme base :

1 000
0100
c¢-NOT : 000 1
0010

Ainsi, la valeur du bit cible est inchangée, si le bit de contréle vaut 0 et la
valeur du bit cible est changée, si le bit de contrile vaut 1. En fait, le bit cible
vaut a la sortie la somme, modulo 2, des deux bits d’entrée, tandis que le bit de
controle reste inchangé. On note alors, ¢-NOT : (z,y) — (z,2 ® y).

En plus de la notation matricielle, on peut introduire la représentation sous
forme de circuit des opérateurs :

|z) —o— |2)

ly) —b— |z ®y)

FIGURE 1.4 — Porte ¢-NOT

On voit donc ici que la porte c-NOT prend en entrée deux qubits simples : |x)
et |y) formant a eux deux un systéme & deux qubits. Le systéme passe donc la
porte c-NO'T et cette derniére retourne le résultat attendu, a savoir : on retourne
I'identité du premier qubit d’entrée sur le premier qubit de sortie, et on retourne
une somme binaire entre les deux premiers qubits sur le second qubit de sortie.
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Porte SWAP

La porte SWAP, comme son nom l'indique, échange la place les deux qubits
passés en paramétre : SWAP : (z,y) — (y,z). La porte SWAP se compose d’une
succession de 3 portes ¢-NOT, avec alternance du bit de contrile :

%)

ly) —€

y)

)

N
N

A\
N
GV

FIGURE 1.5 — Porte SWAP

Porte Fredkin (CSWAP)

Cette porte est une extension de la porte SWAP. En effet, elle permet, comme
la porte c-NOT, d’avoir un bit de contole. Le circuit et les matrices représentant
cette porte (pour les deux cas ou le qubit de controle vaut |0) ou |1)) est défini
ci-dessous [63] :

2

i

&

5]

o

I
(=N =Nl g
[= =N e )
[=Rl =)=l ]
oo OO OO
(=R == === =)
ORrROCOCOO OO
(=T = N N i )
[l =i =R =N =]= = =]

FIGURE 1.6 — Qubit de controle |1) (configuration "High")
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oO~ODOoOO0O0 O o
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FIGURE 1.7 — Qubit de controle |0) (configuration "Low")
Nous pouvons noter que cette porte peut disposer de plusieurs qubits de controle

(par exemple, pour 2 qubits de contdle nous disposerons de 4 configurations pos-
sibles).
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1.5.3 Exemple : Multiplexeur quantique 4 : 1

Pour expliquer le fonctionnement d’un multiplexeur quantique, nous avons
choisi d’étudier le cas particulier ot 'on a 4 entrées et 1 sortie ( QMUX 4 : 1) avec
2 qubits de controle [63].

Le circuit représentant ce multiplexeur quantique est défini de la maniére sui-

vante :
|51} I I |51}
|So} I |So}

| Doy Do}
D} Do1y
D_‘} ‘Do:}
Dz De3)

FI1GURE 1.8 — Circuit : Multiplexeur quantique 4 : 1

Sur celui-ci, nous avons |S), et |S),; qui sont les qubits de controle, |D),, et
| D)., les qubits d’entrées et | D), le qubit de sortie. Ce dernier fait parti des circuits
réversibles.

Ainsi, ce type de multiplexeur quantique pourrait servir a des fins de communi-

cation. De plus, il serait également possible de montrer que l'intrication des états
quantique pourrait étre transmise.
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Chapitre 2

Jeux quantiques

La théorie de jeux est un domaine de science qui est trés répendu de nos
jours, et connait des applications diverses, allant de la biologie & I’économie, en
passant par 1’énergie et les mathématiques. Nous nous proposons dans ce chapitre
de présenter un certain nombre de jeux issus de la théorie des jeux quantiques.
Cette théorie quantique des jeux vise a introduire les formalismes présents en
théorie de I'information quantique afin de développer de nouvelles stratégies et de
nouveaux jeux, dont la performance serait basée sur I'utilisation de la superposition
et de I'intrication comme facteur d’amélioration des résultats. Les jeux qui seront
réutilisés dans la seconde partie du rapport, c’est a dire ceux qui seront mis en scéne
dans une application énergétique seront plus amplement détaillés, par rapport aux
autres jeux quantiques traités. La liste des jeux quantiques présentés n’est pas
exaustive, mais comprend les jeux les plus connus dans la littérature associée.

2.1 CHSH-Game

Le CHSH Game est un jeu a 2 joueurs. Son nom est tiré des CHSH Inequalities
introduites par Clauser, Horne, Shimony et Holt [3, 1]. Ceci vient tout d’abord
du paradoxe EPR introduit en 1935 par Einstein, Podolsky et Rosen. En 1964,
John Bell leur apportera une réponse en établissant sa célébre "inégalité de Bell".
De méme, la "CHSH Inequality" sera introduite pour répondre a la théorie des
variables cachées. Le CHSH Game sera alors présenté comme protocole a cette
occasion, et c’est ce protocole en tant que jeu que nous allons étudier.

2.1.1 Déroulement du jeu

Soient deux joueurs A et B, ne pouvant pas communiquer mutuellement, et R
Parbitre du jeu. R envoie une question biniaire, 0 ou 1, & chacun des joueurs de la
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partie. On dénote par r la question envoyée a4 A et s la question envoyée a B. On
dénote par rs la question globale envoyée aux joueurs. On note () I’ensemble des
questions possibles. L’arbitre posera alors la question rs € () avec :

Q = {00,01, 10,11}

Dans un second temps, les deux joueurs doivent donner une réponse suite a
la réception de leur question. Leur réponse est également biniaire, 0 ou 1, pour
chacun des joueurs. On dénote par a la réponse du joueur A et par b la réponse
du joueurs B. On dit que le jeu est gagné si et seulement si :

rVvs=a®b

Le coeur du jeu est donc, pour les joueurs A et B, de trouver une stratégie qui
maximise la probabilité de gagner au CHSH game.

2.1.2 Meilleures stratégies classiques

On peut imaginer différentes maniére a A et B de s’accorder en avance pour
répondre d’'une maniére précise en fonction de leur question respective. Mais cer-

taines stratégies permettent d’atteindre la probabilité maximale de gagner qui est
de 3.
4

En effet, aucune stratégie classique ne permet de gagner le jeu de maniére siire.
Pour le démontrer, on note respectivement a(r) et b(s) la réponse des joueurs A
et B a leurs questions respectives r et s. Résoudre totalement le jeu reviendrai a
trouver une stratégie, c’est a dire une réponse pour chacun des joueurs, en fonction
de leurs questions, qui satisfait la condition de gain. En d’autres termes, cela
reviendrai a trouver une solution aux équations suivantes :

0V 0=0=a(0)® b0)
0V1=1=a(0)abl)
1V0=1=a(1) @ b0)

1v1=1=a(1)®b1)

En sommant ces équations, on en déduit la condition suivante :

a(0) @ a(0) @ a(1) @ a(1) ® b(0) & b(1) B b0) B b(1) = 0B 1B 1 ® 1

Ceci nous améne a une absurdité (0 = 1), ce qui montre que le systéme d’équa-
tion n’est pas résolvable, donc que ne peut trouver de solution qui résoud le jeu
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totalement. Les scientifiques du domaine on montré que ’on ne peut excéder une
probabilité de % en faisant varier les stratégies. Cela peut se comprendre aussi de
la maniére suivante : si I’on retire une équation du systéme, le systéme devient
résolvable, et il existe plusieurs solutions.

Alinsi, une des stratégies possible pour A et B est de répondre le complément
de la question posée par I'arbitre. La stratégie se résume alors par ces équations :

a(0) = 1,a(1) = 0,6(0) = 1,b(1) = 0

Si 'on remplace ces valeurs dans le systéme on obtient alors :

0=1a1
1=1®0
1=0®1
1=000

On voit bien que 3 sur 4 équations sont correctes, et donc que 1'on résoud le
jeu dans 3 des 4 cas possibles : seule la question {11} posée par Uarbitre les fera
échouer.

2.1.3 Stratégie quantique

La stratégie quantique pour résoudre le CHSH-Game est basée sur le fait que
les joueurs A et B disposent d’une préparation supplémentaire avant le début du
jeu. En effet, les 2 joueurs vont partager un état de Bell. Chacun des joueurs
possédera donc un qubit de P'état intriqué noté |Sell) définit par :

1
V2
La stratégie a adopter pour le joueur A consiste donc en 2 cas :

— Si A recoit la question {0} de la part de I’arbitre, il mesure son qubit dans
la base classique {|0),|1)} (base de Z de Pauli). A envoie ensuite le résultat
de la mesure comme réponse a I'arbitre. Autrement dit, si A mesure |0) pour
son qubit, elle renvoie la réponse {0} a 'arbitre, et inversement.

— Si A re¢oit la question {1} de la part de I’arbitre, il mesure son qubit dans

0)+1 0)—[1 .
la base {|4),|—)} avec |+) = % et |—) = % (base de X de Pauli,
ou base de Hadamard). Cela revient a appliquer la porte Hadamard & son
qubit, puis de le mesure dans la base classique. Si A mesure |+) elle répond
{0} a Parbitre; si il mesure |—) elle répond {1} a 'arbitre.

|Bell) = <|0AoB> + y1A1B>>
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Le joueur B quant a lui, posséde une base qu’il peut roter autour de l'origine
selon un angle a qu’il choisi. Les deux vecteurs de base {|¢), ’¢l>}, vecteur ortho-
gonaux dans la sphére de Bloch, se définissent alors demaniére générique comme
suit :

|¢) = cos (g) |0) + sin (g) 1) o) = —sin (g) 0) + cos (g) 1)

La stratégie & adopter pour le joueur alors B consiste donc en 2 cas :

— Si B regoit la question {0} de la part de I’arbitre, il mesure son qubit dans
la base dont la direction dans la sphére de Bloch est entre celles des bases X
et Z de Pauli, ce qui correspond a un angle de 7. B envoie ensuite le résultat
de la mesure comme réponse a 'arbitre. Autrement dit, si A mesure |¢) pour
son qubit, il renvoie la réponse {0} a l'arbitre; si il mesure ‘¢L> il répond
{1} a larbitre.

— Si B regoit la question {1} de la part de I’arbitre, il mesure son qubit dans la
base dont la direction dans la sphére de Bloch est entre 'opposé de la direc-
tion de la base X et et la direction de la base Z de Pauli, ce qui correspond
a un angle de ?jf. B envoie ensuite de la méme maniére que précdemment le
résultat de la mesure comme réponse a ’arbitre.

En utilisant la sphére de Bloch comme représentation, on peut plus facilement
s’apercevoir que c’est la stratégie la plus intéressante du point de vue du joueur
B.

Intéressons nous maintenant & la probabilité de gain pour cette stratégie quan-
tique. Avant cela, on rappelle les relations liant la base classique & la base de B :

|0) = cos (g) |¢) — sin (g) o) |1) = sin <g) |¢) + cos <g> o)

Supposons que {rs} = {00}. A va donc mesurer son qubit dans la base clas-
sique : elle a autant de chance de mesurer |0) que de mesurer |1). Dans les deux
cas, le qubit de B se retrouve projeté dans le méme état que celui de A. Pour
gagner, les deux joueurs devront avoir la méme réponse, car la question est {00}
et que 00 =1®1=0Vv0 = 0. Si A mesure |0), le qubit de B en sera de méme, et
pour gagner B va devoir mesurer |¢) pour renvoyer la réponse {0}. Comme on le
voit sur I'équation ci-dessus, la probabilité d’étre projeté sur I'état |¢) en mesurant
|0) dans la base {|¢),|¢")} est de | cos(%)|* qui est dans notre cas actuel | cos(¥)|?
car B a reqgu la question {0}.
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De la méme maniére, si A mesure |1), B aura son qubit projeté vers |1), mais
sans le savoir, car il ne 'a toujours pas mesuré. Voulant répondre {1} et étant
donné quei la probabilité de mesurer |¢) a partir de I'état |1) est de |cos(%)|?,
on retrouve bien le méme résultat que dans le cas précédent. Ceci se vérifie de la
méme maniére pour les questions restantes {01}, {10} et {11}, en conséidrant que
[sin(2)[2 = | cos(Z) .

Ainsi la probabilité pour A et B de gagner le jeu avec la stratégie quantique
est de cos?(%) ~ 0.85355339. On surpasse alors la stratégie classique dans ce cas
grace au partage d'un état intriqué.

2.1.4 Variante du CHSH-Game

Cette variante proposée par Alan Boji¢ [5] posséde globalement le méme prin-
cipe de jeu que le CHSH original, hormis la condition de gain du jeu qui est modifiée
en inversant les opérateurs de part et d’autre de I’égalité, ce qui nous donne, avec
les mémes notations :

roes=aVb

Dans cette configuration, on montre, en suivant le méme raisonnement que
précédemment, que les joueurs A et B ne peuvent gagner que dans 50% des cas,
au maximum, s’ils adoptent une stratégie classique. En posant les équations du
jeu, le lecteur pourra s’assurer que l'on ne peut trouver de stratégie qui gagne a
chaque fois, et qu’au maximum, quelque soit la stratégie, on ne peut vérifier que
la moitié des équations du jeu simultanément au maximum.

En outre, si 'on suppose que les joueurs A et B décident de mettre en place
leur stratégie quantique utilisée pour le CHSH Game original, afin de solutionner
le jeu proposé par Bojic, on montre que la probabilité totale de gagner le jeu est
d’environ 0.526, ce qui est meilleur que la stratégie classique.

Ce qui est intéressant, c’est que 'auteur propose également une nouvelle stra-
tégie afin d’augmenter la probabilité de gagner. Succintement, voici les étapes de

la nouvelle stratégie quantique :

— Les joueurs A et B partagent un systéme a 2-qubit maximallement intriqué,
initialisé avec I'état de Bell suivant \/ii<|01413> - |1AOB>>
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—  Si le joueur A recoit la question {0}, il applique lidentité sur son qubit
(ou n’agit pas dessus). S’il regoit la question {1} le joueur A applique la porte
d’Hadamard sur son qubit. Le joueur B agira de la méme maniére que le joueur
A, c’est a dire 'idenité si sa question est {0}, la porte d’Hadamard sinon.

— Les joueurs A et B mesurent leur qubit et renvoient leurs réponses respectives
a et b, resultats de la mesure de leur qubit.

Avec cette nouvelle stratégie, si 'on détaille les différents cas, on s’apergoit que
'on gagne avec une probabilité de 1, pour les questions {00} et {11}, et avec une
probabilité de 25% pour les questions {01} et {10}. La probabilité totale de gagner
s’éléve donc a 0.625, ce qui surpasse les stratégies précédentes appliquées a ce jeu.
On pourrait s’'intéresser a trouver une stratégie plus performante, si elle existe.

2.2 GHZ-Game

Dans cette partie nous nous intéresserons au GHZ-game, variante a 3 joueurs
du CHSH game. Le GHZ-game, contrairement au CHSH game, propose une pro-
babilité de gain de 1, mais restreint le nombre de questions possibles de moitié
pour larbitre.

2.2.1 Déroulement du jeu

Soit R 'arbitre du jeu. Soient A, B et C' les trois joueurs. Le jeu se déroule en
deux temps. Dans un premier temps, I'aribtre sollicite respectivement chacun des
joueurs en lui posant une question. Dans un second temps, les joueurs répondent
a leurs questions respectives de maniére a gagner le jeu, c’est a dire de maniére
a remplir une condition dépendant des questions posées et réponses données. La
difficulté du jeu réside dans le fait que les trois joueurs sont isolés et ne peuvent en
aucun cas communiquer entre eux une fois le jeu commencé (une fois la question
posée). Le résultat au jeu dépendera de la préparation et des stratégies mis en
place par les joueurs avant le début du jeu.

L’arbitre envoie donc une question & chaque joueur. Chaque question prend la
forme d’un bit : 0 ou 1. On note respectivement r, s et t la question posée a A, B
et C'. Une maniére de noter la question globale posée aux joueurs par I'arbitre est

de concaténer les questions en un seul nombre binaire rst.

L’ensemble des question possibles est noté () :
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@ = {000,001,010,011, 100, 101,110, 111}

Le GHZ Game restreint de moitié le nombre de question pour I'arbitre, nous
donnant ’ensemble () :

Q = {000,011, 101,110}

On note ensuite respectivement a, b et ¢ les réponses données par les joueurs
A, B et C. Afin de gagner le jeu, les joueurs doivent remplir la condition suivante :

rVsVi=a®b®dc

2.2.2 Reésolution et stratégies classiques

Une fois le jeu définit, il apparait intéressant de s’intéresser a sa résolution.
On note respectivement a(r), b(s) et c(t) la réponse des joueurs A, B et C a
leur question respective r, s et t. Résoudre totalement le jeu reviendrai a trouver
une stratégie, c’est a dire une réponse pour chacun des joueurs, en fonction de sa
question, qui satisfait la condition de gain. En d’autres termes, cela reviendrai a
trouver une solution aux équations suivantes :

0VOVO0=0=a(0)®b0)® c0)
OVIVi=1=a(0)®b(l)®c(l)
IVvOv1i=1=a(l)®b0)Dc(1)
IVIvVo=1=a(l)®b(l)®c(1)

En sommant ces équations, on en déduit la condition suivante :

a(0) @ a(0) ®b(0) ®b(1)®b(0) Db(1) B c(0)Ddc(l)De(l)dc(0)=001d1D1

Autrement dit, on en arrive 4 0 = 1, ce qui est bien entendu une contradiction.
On peut alors en conclure qu’il n’existe pas une configuration ou stratégie générale
permettant de gagner de maniére sture le jeu.

Cependant, si 'on ne peut pas gagner le jeu avec une probabilité de 1 avec
une stratégie classique, on peut se demander quelle est la probabilité maximale
de gagner au GHZ-Game possible avec une stratégie classique. Cela se comprend
également des équations établies plus haut. En effet, on ne peut valider les 4
équations simultanément et gagner & chaque fois le jeu, mais on montre que 'on
peut au maximum valider 3 sur 4 des équations en choisissant certaines stratégies
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(assignations de a(0),a(1),...,b(1)). Par exemple, si on choisit la stratégie qui est
de répondre la question qui nous est posée, donc a(0) = b(0) = 0et a(1) = b(1) = 1,
alors on peut gagner avec une chance de % = 75% car 3 des équations du systémes
seront toujours résolues. Bien entendu, tout ceci suppose que 'arbitre choisit de
maniére uniforme la probabilité de poser I'un ou 'autre des questions pour chaque
joueur.

C’est un assez bon résultat a premiére vue, mais on ne peut malheuresement
faire mieux pour les deux joueurs sans introduire de communication entre eux. Un
moyen d’améliorer ce résultat est I'introduction d’une corrélation entre les joueurs,
et c’est ce que nous allons voir avec la présentation de la stratégie quantique
suivante

2.2.3 Stratégie quantique pour le GHZ-Game

La régle impose aux joueurs de ne pas communiquer entre eux durant le jeu, et
donc d’éventuellement se préparer en amont pour maximiser les chances de gain.
Un des maniéres de se préparer serait de partager un état intriqué et d’utiliser
cette intrication afin de mettre en place un stratégie permettant encore une fois
de maximiser les chances de gain, et si possible qu’elles soient supérieures a celles
des stratégies classiques.

Supposons que les joueurs partagent un systéme quantique intriqués, un 3-
qubit notamment. On choisit un état maximalement intriqué, c’est a dire un état
équivalent a |GHZ) noté |GHZ'), construit comme suit :

(GHZ') = PPH™GHZ) — %(|ooo> — Jo12) — 101) — [110))

11 10
H_(l —1) etP_(o e2>

La stratégie quantique pour chaque joueur est la suivante :

— Si le joueur recoit la question {0} de la part de I'arbitre, il mesure sa particule
dans la base classique {|000),...,|111)} (Z-basis), et renvoie & Parbitre le
résultat de sa mesure comme réponse

— Si le joueur recoit la question {1} de la part de l'arbitre, il mesure sa particule
dans la base X de Pauli, ce qui revient & appliquer la porte Hadamard puis
de mesure dans la base classique Z, et renvoie a 'arbitre le résultat de sa
mesure comime réponse

avec
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Cette stratégie permet aux joueurs de gagner avec une probabilité de 1, pour
une question appartenant a Q).

Démonstration. Sila question posée est {000}, alors chacun des joueurs n’agit pas
(ou applique 'identité a sa particule) et mesure. L’état partagé par les 3 joueurs

demeure toujours |GHZ') = %<|000) —|011) —|101) — |110>> et donc quelque soit
I’état de base mesuré et envoyé par les joueurs, il répond bien & la condition de
victoire du jeu :

OvVOvVo=02000=00101=100021=101d0

Si la question posée est {011}, les joueurs B et C' appliquent Hadamard a leur
qubit avant la mesure. L’état partagé par les 3 joueurs devient donc :

1
GHZ")=1®H® HIGHZ') = 5 (1001> +(010) — [100) + |111>>

On voit également ici que quelque soit 1’état de base mesuré et la réponse
envoyée par les joueurs, cela répond bien a la condition de victoire du jeu :

OVivli=02001=00100=10000=101d1

Par permutation, I’état obtenu avec les questions {101} et {110} est équivalent
a celui obtenu avec la question {011}. On montre alors bien que pour les questions
{00}, {011}, {101} et {110}, la stratégie quantique est gagnante a 100%. O

2.2.4 Questions restantes pour ’arbitre

Dans cette sous partie, nous nous intéresserons rapidement aux performances
de la stratégie quantique pour répondre aux questions restantes, non prises en

compte dans le GHZ-Game (Q\Q).

Pour la question {001}, par permutation équivalente & {010} et {100}, le troi-
siéme joueur C' applique la porte d’Hadamard a son qubit. L’état partagé par les
trois joueurs devient :

IGHZ") = I9IQH|GHZ') = —— \ooo>+|001>—|01o>+|011>—\100>+1101>—|11o>—|111>)

1
2\/§<
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On remarque alors que seulement la moitié des états de base composant le
systéme répondent & la condition de victoire. La probabilité de victoire dans ce
cas est de 50%, et de méme pour les questions {010} et {100} de ce fait.

La question {111} regue par les joueurs implique l'application de la porte Hada-
mard & chacun des qubits du systéme. L’état qui en résulte s’exprime alors comme
suit :

|
IGHZ") = HoHOH|GHZ') = m(—|000>+|001>+|010>+|011>+|100>+|101>+|110>—|111>>

On remarque de la méme maniére que 1’on ne gagne que dans 50% des cas. On
comprend alors qu’introduire ces 4 questions dans le jeu réduirait la probabilité
moyenne de gagner a 75% au lieu de 100%, ce qui n’avantage pas le jeu et ne le
rend plus aussi efficace.

2.2.5 Performance au GHZ-Game avec un état |IW) ou |BiSep)
partagé
Une autre configuration a laquelle nous pouvons réflechir est celle ot I'on choi-
sirait, & la place d’un état intriqué équivalent & |GH Z), un état intriqué équivalent
a |[W). On pourrait alors étudier la différence de performance entre les deux types
d’intrication pour la méme stratégie quantique.

On suppose alors que les 3 joueurs partagent un état équivalent a [IV), tel que :
1

V3

Si la question {000} est posée, on observe que 'on gagne le jeu quelque soit la
mesure effectuée.

W'y = X3 (W) = (1011> +]101) + |110))

Si la question {011} est posée, les joueurs B et C appliquent Hadamard & leur
qubit, ce qui donne I’état suivant :

1
W) =T He HW) = (1000) — J001) — 010} + J011) + 2[100) — 2]111))

On remarque que on perd si 'on mesure les états de base [000) et [011). La
probabilité de perdre est donc la probabilité d’obtenir ces états :
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1 1 1 1
erare({011}) =2 x (—=)?=2x = x = = =

Donc la probabilité de gagner dans ce cas est de %. Ainsi, la probabilité générale
en moyenne de gagner est de % = 0.875 avec un état |W) partagé.

On remarque alors que ’on ne peut gagner avec une probabilité de 1, et on le
montre méme si 'on change de stratégie [2|. La différence de nature de l'intrication
joue ici un role important pour la performance du joueur. De la méme maniére, si
I’on prend un état bi-séparable comme état partagé par les 3 joueurs, un état du

type :

%(1000) —jo11)) = %\0) ® (J00) — [11))

Dans ce cas, le qubit de A est totalement séparé, tandis que B et C' partagent
un état maximalement intriqué (état de Bell). On montre alors que dans cette si-
tuation, si les joueurs utilisent la méme stratégie quantique, la probabilité générale
de gagner au jeu est égale a 75%, c’est & dire la méme qu’en classique. On peut
vérifier pour cela que les questions {000} et {011} aménent vers un gain certain,
tandis que les questions {101} et {110} ne permettent de gagner que la moitité du
temps. Si les joueurs B et C décident d’employer la méme stratégie que celle vue
pour le CHSH-Game, alors le gain devient de 0.8536 comme attendu, ce qui est
toujours inférieur a 1.

|BiSep) =

Ainsi, la nature de 'intrication joue bien un réle dans la performance de ce jeu
quantique, et peut étre dans d’autres. Il serait intéressant d’investiguer d’autres
jeux quantiques similaires et d’étudier les performances de systémes quantiques
d’autre nature (4-qubits, 3-qutrits, etc.) en fonction de leur intrication. Néan-
moins, il est toujours possible de modifier ce jeu afin que les performances soient
supérieures pour un type d’intrication donné. Ceci est 'objet de la prochaine sous-
section.

2.2.6 W-Game

Si 'on veut obtenir une meilleure performance avec un état partagé de type
|W), il convient de modifier la nature du jeu pour que la nature de l'intrication de
cet état soit un avantage par rapport aux autres classes d’intrications.

Il est intéressant de remarquer, tout d’abord, qu’un état de type |[WW) fait

intervenir une intrication maximale mais du point de vue individuel d’une paire
a 2-qubits constituant ’état, tandis qu’un état de type |GH Z) fait intervenir une
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intrication "pure" entre les trois qubits de I’état, et de ce fait devient séparable si
on mesure un des qubits, ce qui n’est pas le cas pour un état |W) ot I'on obtiendrait
un état maximalement intriqué, & une opération filtrage locale prés.

Ceci nous amene a comprendre qu’un jeu, ou I'arbitre pose les mémes ques-
tions que dans le jeu GHZ, @ = {000,011, 101,110}, mais qu’il choisit d’ignorer
aléatoirement un des joueurs, pourra étre gagné si les joueurs partagent un état
de type |W). Ceci revient en fait a jouer au CHSH-Game avec les 2 des 3 joueurs
choisis aléatoirement, et donc la probabilité de gagner sera identique pour les deux
jeux, qui sera de 0.8536, ce qui est meilleur que la performance classique (0.75) et
celle avec un état GHZ partagé (0.75).

2.2.7 Geénéralisation a n joueurs du GHZ-Game

Dans cette sous-section, nous proposons une généralisation a n-joueurs du
GHZ-Game précédemment présenté. Pour ce faire, on essaye de se placer dans
la méme configuration que pour le jeu a trois joueur.

Les paramétres a considérer pour le GHZ-Game & trois joueurs sont les sui-
vants : I’état équivalent a |[GHZ) que les joueurs partagent, les questions posées
par D'arbitre, et les stratégies appliquées & chaque cas. On souhaite trouver une
généralisation de ces parameétres pour n joueurs, tout en gardant une probabilité
de 1 de gain. L’énoncé du jeu est donc le suivant.

Définition du jeu

Soit J l’ensemble {Jy, Js, ..., J,} de cardinal n des joueurs au GHZ,-Game.
On dénote par R Parbitre. On note {¢1¢z ... ¢, } la question envoyée par I'arbitre,
avec chaque ¢; étant la question envoyée au joueur J;. On note r; la réponse du
joueur J;. La condition de gain est toujours de la méme forme :

n n
V=D
=0 =0

Soit |GHZ,) 'état |GHZ) généralisé a n-qubit, s’écrivant :

(107" + )

’GHZn> =

Sl

2
On définit ensuite |GHZ)) tel que :

1
(GHZ!) = H"|GHZ,) = % <H®"|O>®” + H®”|1)®”)
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Or on sait que :

De plus :

—1)#@)
e = Y S )

avec p(z) désignant le nombre de 1 dans I’écriture binaire de z.

Ainsi, on obtient un état |GHZ!) comme somme de 27! état de base de
H = (C?)®". Les états de base présents sont tous le sétats de base dont ’écriture
binaire comprend un nombre pair de 1. Ainsi, on peut ré-écrire ’état comme suit :

2" —1

'y o(x (mod 2
IGHZ!) Z 2n1 )|x>

On définit ensuite I'état |GHZ)) tel que :

|GHZ!) = P*"|GHZ!)  avec P = ((1) 69727)
Cet état |GHZ)), équivalent a |GH Z), sera partagé par les n-joueurs du GHZ,,-
Game.

[’arbitre sélectionne ensuite les questions a poser. Pour étre sur d’avoir un
gain de 1, les questions sont restreintes a la question {00...0}, ainsi qu’a toutes
les questions comprenant exactement deux digits a 1 dans leur écriture binaire.
On dénombre alors 1 + ( ) questions, soit n? ””

Si on prend le cas n = 3, on retrouve bien que les 1+ (g) = 4 questions choisies
par l'arbitre sont bien la question {000}, ainsi que toutes les questions possédant
2 digits a 1 exactement soit {011}, {101} et {110}.

Enfin, la stratégie a appliquer est la méme que pour le jeu & 3 joueurs. Si un
joueur recoit la question {0}, il mesure son qubit dans la base classique, sinon
il applique la porte d’'Hadamard & son qubit et ensuite il mesure dans la base
classique.
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Exemple avec 4 joueurs

Supposons que nous voulions généraliser le GHZ-Game pour 4 joueurs. On
commence par déterminer I’état quantique partagé par les 4 joueurs. On part de
I'état |GHZy4) afin de construire 1'état |GHZ)), tel que :

1
V8

On détermine ensuite |GH Z}) ’état partagé par les 4 joueurs :

\GHZ,) = H**|GHZ,) = (|0000>+|0011>+|0101>+|1001>+|0110>+|1010>+|1100>+|1111))

1

V8

+i%]1010) + 2[1100) + i4|1111)>

\GHZY) = PP GHZ)) = (|0000) +4]0011) + 4°|0101) + 4*[1001) + i*|0110)

Aprés simplification, on obtient alors :

1
IGHZ]) = ﬁ<|OOOO>_|0011>_|0101>_|1001>_|0110>_|1010>_|1100>+|1111>>

I’ensemble des questions disponibles pour ’arbitre sera
CNQ = {0000, 0011,0101, 1001,0110, 1010, 1100}

conformément & la définition du jeu. Nous verrons plus tard pourquoi la question
{1111} doit étre enlevée du jeu.

Supposons alors que la question posée est {0000}. Chacun des joueurs va alors
appliquer 'identité sur son qubit et ensuite le mesurer, ce qui revient a ne pas agir
dutout sur leur état partagé |GHZY). On remarque alors que quelque soit 1'état
de base mesuré a partir de I'état partagé, tous sont solutions du jeu. Ainsi, les
joueurs gagnent le jeu avec une probabilité de 1 pour cette question.

Supposons a présent que la question posée est {0011}. Par permutation, I'étude
de cette question est équivalent a 1’étude de toutes les questions restantes (hormis
{0000}). Les deux premiers joueurs ne vont donc pas agir sur leur qubit (ou appli-
quer l'identité), tandis que les deux derniers vont appliquer la porte d’Hadamard.
L’état partagé résultant est donc :

1
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00) (J0) +11)) (10) + 1)) = 00} (J0) = 1)) (10) = 1)) 01} (Jo) + 1)) (10} = 1))
—[10)(10) +11)) (10) = 1)) =01} (J0) ~ 1)) (10) +[1) ) = [10} (10} ~ 1)) (10) +[1})
=1y (10) + 1)) (10) + 1)) + 00) (10) = 1)) (10) = 1))

En développant les produits tensoriels, on obtient :

|
1®I®H®Hmﬂa9:——[

2V/8
10000)+]0001)4-|0010)4-|0011)—|0000)+]0001)+|0010)—|0011) —|0100)+-|0101) —|0110)+|0111)

—[1000)-+[1001)—|1010)4-|1011) —[0100) —[0101)-+[0110)+|0111) —|1000) —|1001)+|1010)+|1011)
—[1100) — |1101) — [1110) — |1111) + |1100) — [1101) — |1110) + |1111)

Aprés simplifications des termes doubles et ceux qui s’annulent, on obtient
I’état final :

1
IQIQHRQH|GHZ]) = %(|0001>+]0010>—|0100)+|0111>—|1000>+|1011)—|1101>—|1110))
Si on regarde chacun des états de base, on se rend compte qu’ils font tous office
de réponse gagnante pour le jeu. Les joueurs ont donc une probabilité de 1 de
gagner pour ce type de question, et donc, au final, une probabilité totale de gagner
au jeu de 1, comme voulu.

Concernant le délaissement question {1111} qui apparait en fait dans I’écriture
de I'état |GHZ]), ou peut se demander pourquoi ne pas tout simplement prendre
comme questions la séquence binaires de tous les états de I’état intriqué partagé par
les joueurs, comme c’est le cas pour le jeu GHZ-Game a trois joueurs. Et bien, on se
rend compte en posant les calculs que la stratégie ne marche pas pour la question
{1111} car le nombre de fois ot I'on applique Hadamard n’est pas convenable pour
éliminer dans la simplification finale les états de base qui ne font pas gagner le jeu.
On peut s’attendre au méme genre de phénomeéne pour un nombre de joueurs plus
grand. En restreignant les questions a celles qui ont deux digits a 1 exactement
dans I’écriture binaire, on s’assure d’écarter ce probléme, mais 'on peut dans le
méme temps omettre certaines questions qui permettent de gagner tout de méme.
Une étude approfondie, et une démonstration rigoureuses des résultats présentés
se doit d’étre menée dans la suite.
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2.3 Dilemme du prisonnier

2.3.1 Principe du jeu classique

Le dilemme du prisonnier est une jeu dans lequel deux prisonniers, qui sont
arrétés pour l'infraction d’un petit délit, doivent faire face aux questions d’un
inspecteur de police. En effet, ils sont, tout deux, soupconnés d’avoir commis un
délit plus grave. Cependant, 'inspecteur ne dispose d’aucunes preuves plausibles
contre ces deux "malfrats" concernant le deuxiéme délit. Par conséquent, ce dernier
va les séparer et les couper de toutes communications entre eux afin d’obtenir des
aveux. Ce jeu fait donc partie des jeux non coopératif puisque chaque joueur doit
prendre sa décision sans connaitre la décision prise par I'autre joueur.

Afin d’obtenir des aveux, l'inspecteur de police propose, aux deux prisonniers,
la possibilté de dénoncer 'autre prisonnier afin d’écoper d’une peine peine de prison
moins importante. Chaque prisonnier peut également refuser cette option. Ainsi,
diffférents résultats, exactement 4 dans notre cas, peuvent avoir lieu. Ces derniers
sont résumés dans le tableau suivant :

Prisonnier 2 . )
) . Se taire | Dénoncer
Prisonnier 1

Se taire (35 3) (0;5)
Dénoncer (55 0) (1;1)

Dans notre étude de cas, nous avons choisi des gains qui pourraient corres-
pondre a des allégements de peine de 0, 1, 3 ou 5 ans. Il faut noter que dans la
notation choisie pour le tableau (& savoir (Gain 1; Gain2)), le gain 1 et le gain 2
correspondent respectivement au gain du prisonnier 1 et du prisonnier 2. Iobjectif
de chaque joueur est de maximiser son gain individuel.

2.3.2 Analyse des stratégies classiques

1. Coopération des 2 prisonniers (Loyauté)

Dans ce cas ou les deux prisonniers choisissent de ne pas se dénoncer et faire
preuve de solidarité, nous pouvons constater que 1’allégement de la peine de
prison est de 3 ans. Le gain est maximal pour I'ensemble des deux joueurs
mais ne ’est pas si l’on prend chaque joueur individuellement. Cette situation
est trés fructueuse pour les deux partis mais nécessite une certaine confiance
I’'un en vers l'autre.
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On peut remarquer que si 'on fixe la stratégie du premier prisonnier et
que 'on fait varier la stratégie de 'autre, le gain du premier prisonnier est
augmenté en dépit du gain de 'autre prisonnier. Ici, le proverbe "le malheur
des uns fait le bonheur des autres" est mis & I’honneur. On appelle ce type
de stratégie un "Pareto optimal".

2. L’un dénonce 'autre (Individualisme)

Cette configuration est envisageable pour les deux joueurs. Il est ainsi pos-
sible de faire preuve d’égoisme en dénoncant son collégue afin d’obtenir un
allegement de peine. Dans notre cas, le dénonciateur obtiendra un alleége-
ment de peine de 5 ans, ce qui correspond au gain maximal individuel, alors
que I'autre joueur sera accusé coupable et ne bénéficiera d’aucune indulgence,
c’est-a-dire un allégement de peine nul (gain minimal individuel). Cette stra-
tégie ameéne donc a une trahison de 'un en vers 'autre en vue d’obtenir un
gain maximal individuel.

3. Dénonciation des 2 prisonniers (Lacheté mutuelle)

La derniére stratégie possible consiste a une dénonciation "inter" prisonnier.
Les deux vont tenter d’obtenir le gain maximal individuel. Cependant, les
aveux des deux prisonniers ne vont pas permettre 'obtention d’un allége-
ment de peine maximale. En effet, les deux témoignages se compensent et ne
permettent pas d’accuser un prisonnier. Par conséquent, chacun va écoper
d’un alléegement d’uniquement 1 an.

Nous pouvons également remarquer que cette stratégie est un équilibre de
Nash. C’est-a-dire, qu’aucun des deux joueurs n’a intérét a changer de stra-
tégie. Leurs gains ne seraient que détérioré.

2.3.3 Notion de dilemme

Pour comprendre la notion de dilemme, il nous suffit d’imaginer la réflexion
qu’aurait un joueur avant de choisir sa stratégie. En effet, s’il considére que son
adversaire décide de se taire alors il a tout intérét & le trahir en le dénoncgant
(gain maximal de 5 au lieu de 3 il se taisait lui aussi). Dans le cas inverse ou
il considérerait que son adversaire décide de le trahir, il aurait également tout
intérét a le trahir également afin d’obtenir encore le gain le plus intéressant pour
lui, c’est-a-dire un gain de 1 (au lieu de 0 s'il se taisait). Ainsi, il nous semblerait
que la stratégie de la trahison soit celle que nous devrions choisir. Cependant, nous
oublions un détail. Le prisonnier peut également réfléchir de la maniére que nous
I’avons fait précédemment. Dans ce cas la, ils obtiendraient tout deux un gain de 1
au lieu d’un gain de 3 s’ils s’étaient tus. De fait, il réside bien dans ce jeu une notion
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de dilemme qui réside dans ’absence de communication entre les deux prisonniers
et plus précisément dans 'altercation entre 'intérét individuel et collectif.

2.3.4 Déroulement du jeu quantique

Nous allons maintenant voir le dilemme du prisonnier sous sa forme quantique.
Pour ce faire, le circuit représentant les différentes étapes a effectuer peut étre
représenté de la maniére suivante :

Prisoner Dilema Circuit.png

o 1o
J (v — J | 1)

FIGURE 2.1 — Circuit : Dilemme du prisonnier quantique

Dans cette nouvelle configuration, les deux prisonniers détiennent chacun un
qubit. Ces derniers forment un systéme dont 1’état est intriqué (ou non séparable).
En d’autres termes, les modifications appliquées a un qubit vont nécessairement
provoquer des répercussions sur ’état du second qubit, ils sont donc ainsi indirecte-
ment liés. C’est cette particularité qui va étre exploitée lors du choix des stratégies.
Chacun des deux prisonniers va pouvoir effectuer des manipulations sur son qubit.

Tout d’abord, nous allons considérer que chaque stratégie. se taire ou dénoncer
b ) )

sera notée, respectivement, sous la forme de deux états de base |C) et |D), qui

peuvent étre écrit sous la forme de deux vecteurs : |C)= (é) et |D)= ((1))
1. Initialisation

Cette étape correspond a l'intrication des deux qubits par lintermédiaire
d’un opérateur J. Cet opérateur est connu par les deux prisonniers. Ainsi,
nous obtenons I'état initial du systéme intriqué sous la forme :

1) = J|CC) = cos(3)|CC) + isin(3)|DD)
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~ représente le taux d’intrication entre les deux qubits. Sa valeur est comprise
entre 0 (cas ot le sytéme a 2 qubits est séparable) et 7 (cas ot le systéme a
2 qubits est maximalement intriqué).

. Opérateurs locaux et mesure

Chaque prisonnier détient un opérateur qu’il peut appliquer & son propre
qubit. On notera U, et UQ, respectivement, 'opérateur du prisonnier 1 et du
prisonnier 2. L’opérateur U , défini comme ci-dessous, représente ’ensemble
des stratégies possibles, avec 0 < <met 0 < ¢ <7/2:

o [€%cos(0/2)  sin(6)2)
U(o,¢)= ( —sin(6/2) e‘i¢cos(9/2))

Remarque : Nous pouvons constater que les stratégies classiques C et D sont
incluses. En effet, chacune d’elle est caractérisée par un opérateur particulier.
Soient :

U0,0)=1= ((1) (1)) < C:"Se taire"

U(r,0) =X = (_01 (1)> < D : "Dénoncer"

Nous obtenons ainsi I'état du systéme :
i) = (Uy @ Uy) J|CC).

Ensuite, il nous suffit d’appliquer la transformation inverse de J nommée J1
afin d’obtenir I’état final du systéme :

[s) = JH (UL ® Uz) JICC)

Finalement, nous effectuons la mesure de 'état final |¢;) afin d’obtenir I'un
des états de base |CC), |CD), |DC) et |DD).

. Gain
L’état final du systéme peut étre écrit sous la forme suivante :

[V5) = 1|CC) + 12| CD) + 93| DC) + 14| DD)

La matrice des gains peut étre défini comme suit :

o (Wl [\ _ (Pec Pep
[0s|* [hal? Ppc Ppp
Nous pouvons maintenant exprimer le gain de chaque prisonnier, a ’aide des
gains classique fixés précédement, de la maniére suivante :
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$1 == 3PCC + 1PDD + 5PDC + OPCD
$o =3Pcc + 1Ppp + 0Ppe + 5Pcp

$1 et $5 représentent les gains respectifs du prisonnier 1 et 2. P,, représente
la probabilité pour que 'état final soit dans 1'état |xy). Elle est définie telle

que Py = |zy[|vp) [

Nous pouvons également constater que l'état final |1);) dépend du choix de
stratégie des deux joueurs et ainsi les gains respectifs $; et $5 dépendent
également de la stratégie des deux joueurs.

0 2)

nous pouvons obtenir la table des gains suivante :

. Table de gains : Opérateur Z
En utilisant 'opérateur Z,

. ) Prisonnier 2 Porte I | Porte X | Porte Z
Prisonnier 1

Porte T (3;3) | (0;5) (1;1)
Porte X (5;0) | (1;1) (0; 5)
Porte 7 (1;1) | (5;0) (3; 3)

Nous pouvons constater que 'application de cette porte Z permet d’obtenir
une stratégie quantique qui est a la fois un équilibre de Nash et un Pareto
Optimal. En effet, si les deux joueurs choisissent la stratégie quantique, ils
n’ont aucun intérét a changer de position car leurs gains individuels sont au
maximum. Dans la configuration classique, on pouvait obtenir un équilibre
de Nash ou un Pareto Optimal mais on ne pouvait pas obtenir ces deux
caractéristiques en méme temps.
— Démonstration des résultats obtenus :
Nous allons expliquer les étapes de calculs afin d’obtenir les gains obtenus
pour la stratégie (Z,Z).

Soit : A

J=5Iel+iX®X)
Alors : R

|¢s) = J|CC) = Z(|CC) +i|DD))

Or:

1 0 1 0 1 0

Z®Z(o —1) ®(0 —1) = <o 1) =1

D’ou :
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Vi) = (Z ® 2)J|CC) = &5(|CC) +i|DD)).
Ensuite : R
Jh= 5ol -iX®X)
Ainsi : ) )
W) = JN(Z® 2)J|CC) = LQ x —=(|CC) —i|DD) +i|DD) — i xi|CC)) =

|CC)

-

2

Finalement :

$1 = SPCC + 1PDD + 5PDC + OPCD =3

$2 :3PCC+1PDD+OPDC+5PCD =3
Les autres couples d’opérateurs aménent a des calculs similaires. Par consé-
quent, nous ne détaillerons pas les calculs des autres stratégies.

Choix de la porte quantique

Comme nous I'avons vu précédemment, il est possible de définir la matrice,
qui représente 'ensemble des stratégies possibles pour les deux prisonniers, de la
maniére suivante, avec 0 <0 <rmet0< ¢ < 7/2:

o o (@cos(6/2)  sin(6/2)
U(o,¢)= ( —sin(6/2) ei¢cos(9/2))

Nous pouvons obtenir I’évolution du comportement du jeu quantique en faisant
varier le paramétre v correspondant au niveau d’intrication du systéme composé
par la paire de qubits détenue par les deux prisonniers [19]. Nous pouvons distin-
guer 3 types de comportements :

1.0<y < arcsin(\/ig) — Comportement classique
2. arcsm(\/ig) <~y < arcsin(%)% Comportement intermédiaire

3. arcsm(\/lg) <~ < § — Comportement quantique

2.4 Binary Constraint System Game

Le principe du Binary Constrain System est un moyen de modéliser de nom-
breux problémes informatique et logiques, dans la mesure ou il est définit par un
nombre finit de variables et contraintes formelles, pouvant ensuite étre appliquées
dans divers domaines. C’est un sujet qui a participé pour donner de I'importance
a la théorie de la complexité informatique et et I'information quantique. C’est un
jeu que I'on peut retrouve implicitement dans les travaux de Mermin concernant le
théoréme de Bell. Afin d’expliquer ce jeu, nous nous baserons sur le travail présenté
dans le célébre article [3].
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2.4.1 Principe du jeu

Soient vy, vy, . .., vy, n variables binaires telles que Vi € [1,n], v; € {0,1} = Z,.
Soient ¢y, ¢o, . . ., ¢y, m contraintes. Chaque contrainte est une fonction a plusieurs
variables binaires et & valeur dans Z, :

Zg — Zo
vil,viz,...,vik) = U, D, D Dy, =2z € Loy

Viell,m], ¢: { (

Un Binary Constraint System se composera alors d’un ensemble de variables
et de contraintes. On dit qu'un BCS Game est satisfiable si on peut trouver un
n-uplet (vy, v, ...,v,) qui satisfont chacune des m contraintes.

Un exemple classique de BCS est celui énoncé dans la version du théoréme de
Bell introduite par Mermin [6]. Dans cet exemple, on a n = 9 variables et m = 6
contraintes :

V1 Dve Dvg =0 v1DvyDvr =0
Vs D vs Bvg =0 vy D vs Bug =0
U7@08@U9:0 UB@U6@U9:1

Dans notre exemple, on se rend bien compte que le jeu n’est pas satisfiable,
dans la mesure o1 'on ne peut trouver d’affectation pour les variables qui vérifient
les 6 contraintes. Nous pouvons aussi remarquer que la somme des équations nous
ameéne a 'absurdité 0 = 1.

Un élément important concernant les BCS, et que 'on peut associer a chaque
Binary Constraint System un jeu "non-local" & deux joueurs, nommé Binary
Constraint System Game, selon le principe suivant. Soient A et B deux joueurs
coopérant, mais qui ne peuvent pas communiquer une fois le protocole du jeu
entamé. Soit R I'arbitre du jeu.

L’arbitre R choisit de maniére aléatoire, mais uniforme, une contrainte du jeu c,
ainsi qu’une variable v; intervenant dans la contrainte c,. L’arbitre envoie 'indice
s & A et l'indice t & B. Le joueur A doit renvoyer une affectation des toutes les
variables présentes dans la condition c,. Le joueur B doit renvoyer une affectation
de la variable v;. L’arbitre R accepte leur réponse, c.a.d le jeu est gagné, si et
seulement si :

— L’affectation des variables choisie par A satisfait bien la condition c,

— L’affectation de la variable v; choisie par B correspond & celle choisie par A
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Une stratégie de résolution du jeu est dite parfaite si elle permet de gagner
le jeu de maniére siire. Ainsi, on en déduit que tout BCS Game qui est satis-
fiable admet une stratégie parfaite classique. Il serait intéressant, par contre, de
se demander s’il existe des stratégies quantiques parfaites pour des BCS Games
non-satisfiables.

2.4.2 Stratégie quantique parfaite

Le travail de Mermin [6, 7], notamment ses découvertes sur les observables, a
des répercutions sur les stratégies quantiques pour le BCS Game en particulier
pour les 2 exemples qui suivent.

Le premier exemple est celui présenté précedemment, avec n =9 et m = 6. Le
second exemple est un BCS Game avec n = 10 variables et m = 5 contraintes.
On peut représenter ces jeux sous la forme de figures géométriques : les variables
sont disposées en fonction de leur appartenance aux conditions. Une condition
correspond & une ligne de variables reliées par un trait simple ou double. Le trait
simple indique que la somme modulo 2 des variables doit étre égale & 0, tandis que
le trait double indique une somme modulo 2 égale a 1. Les figures de ces deux jeux
sont appelés "magiques", car une stratégie parfaite quantique existe pour résoudre
ces jeux, qui ne sont pas resolvables en classique. On représente alors les 2 jeux
sur les figures suivantes.

8\

V1i—— Uy— U3
U1 s

|
S D R i

(o} Us Ug U4 U5

R [
V77— UVs— Vg / \

Ug V10

FIGURE 2.2 — Carré magique (a gauche) - Pentagramme magique (& droite)

Afin de comprendre la stratégie quantique proposée par Mermin, on transforme
tout d’abord chaque variable v; € {0,1} en variable V; = (-1)" € {+1,—1}.
Chaque contrainte peut alors se redéfinir comme le produit des variables V; a
valeur dans {+1,—1}. On redéfinit alors la notion de satisfaisabilité pour une
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affectation quantique des variables comme une affectation de n opérateurs Her-
mitiens Aq, Ao, ..., A, aux variables Vi, V5, ...,V telles que ces trois conditions
soient remplies :

Condition 1 : Chaque opérateur A; est un observable binaire dont les valeurs
propres appartiennent a {+1, —1}, autrement dit, A? = I.

Condition 2 : Chaque couple d’observables A; et A; appartenant a la méme
contrainte doivent commuter, autrement dit, A;A; = A;A;.

Condition 3 : Les n opérateurs A;, Ao, ..., A, doivent satisfaire chacune des
contraintes ¢, : {+1, —1}* — {+1, —1} agissant sur les variables V,,V,,,..., Vi,
de telle sorte que chaque équation c(A4;,, Ai,, ..., Ai,) =1 ou — I soit satisfaite.

Une fois ceci définit, le théoréme mit en place par Cleve et Mittal [$] nous
permet d’avoir une relation entre affectation quantique satisfaisante et stratégie
parfaite :

Théoréme 2.4.1. Quelque soit le Binary Constraint System considéré, s’il existe
une stratégie parfaite pour le BCS Game correspondant, alors il existe une affec-
tation quantique satisfaisante au jeu.

L’idée derriére cela est que s’il existe une stratégie parfaite au jeu, en utilisant
un état maximallement intriqué (de type |GHZ,) typiquement), les opérateurs
peuvent étre créé par projection a partir de la stratégie parfaite, de telle sorte que
ces opérateurs satisfont les 3 trois conditions émises précédemment. Par ailleurs, s’il
existe une telle affectation quantique, alors toutes les contraintes seront satisfaites
et il existera un observable A; pour chaque variable V;. La preuve compléte est
détaillé dans I'article [3].

Ainsi, si 'on revient a nos exemples précédents, pour chaque jeu, une affectation
quantique satisfaisante faisant office donc de stratégie parfaite est présentée sur
les figures ci-contre.

01 0 —i 1 0
avec.X(1 0>’Y(i 0),2(0 _1)
etdonc: X*=Y?=2°=1 XY =iZ,YZ=iXet ZX =iY

Le lecteur pourra en effet vérifier que le produits des observables sur chaque
ligne simple donne bien l'identité, tandis que le produit des observables liées par
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ZI1T

1 — 12 — 2727

XXZ=/XX=Z7ZZ XZX

oSN

IX—XI— XX IXT 1Z1
/ yd
XTI
ZIX— XZ—YY HX/ N

FIGURE 2.3 — Affectations quantiques valides - Carré magique (& gauche) - Penta-
gramme magique (& droite)

des lignes doubles donne bien 'opposé de I'identité. Pour des simplifications de
notation, la juxtaposition d’observables correspond en fait a leur produit tensoriel.
On a donc par exemple ZX = 7 ® X.

Si I'on se penche par exemple sur la premiére ligne solution du carré magique,
on vérifie bien que le produit donne 'identité :

(ZoI®2)(ZR2)=(ZIZ)R(IZZ)=(Z) 2 (Z*) =11

De méme pour la derniére colonne solution du carré magique, on vérifie bien
que le produit donne 'opposé de I'identité :

(ZRZ)(X2X)(YRY) = (ZXY)R(ZXY) = ((YY)R31YY) = i*(Y)R(Y?) = —(Ix])

2.4.3 Condition d’inexistance de stratégie quantique par-
faite

Comme discuté dans larticle [10] et proposé par Speelman, il existe pour cer-
tains BCS Game un moyen simple de déterminer s’il n’existe pas de stratégie
quantique parfaite résolvant le jeu. On étudie pour cela la cohérence des équa-
tions obtenues en posant le jeu de maniére quantique en tentant de trouver une
contradiction.

Etudions par exemple le BCS-Game, avec n = 6 variables, et m = 4 contraintes
, représenté par la figure et les équations suivantes :
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vi

v4 ]

v2 v3

vH

FIGURE 2.4 — Schéma du jeu en exemple

1)1@’06@?}3:0 ’01@?}4@1}2:0
UQEB’U5€BU3:O ’04@1}5@1]6:1

On suppose alors qu’une affectation quantique satisfaisante existe. On construit
alors, a partir des variables vy, v, ..., vg, les variables Vi, V5, ..., Vg, ainsi que les
observables Ay, As, ..., Ag correspondants. On retraduit alors chacune des contraintes
avec les obersvables, ce qui nous donne :

A1AgAs =1 A1A A =1
AsAsAs =1 AyAsAg = —1

Partont de la seconde contrainte, qui sera notre équation principale, ce qui
nous donne A;A4As = I. En multipliant par A & gauche dans la troisiéme
contrainte, on obtient A; = A5As. En réinjectant dans notre équation principale
on a A1A4A5As = I. En multipliant & droite par Az dans la premiére contrainte,
on en déduit que A3 = A;Ag. D’ou la nouvelle expression de 1’équation principale
A1 Ay A5A1Ag = 1. En multipliant par — A4 & gauche dans la quatriéme contrainte,
on obtient Ay = —AzAg. On en déduit alors que A;A5AsA5A1A¢ = —1. En uti-
lisant la propriété de commutativité pour les observables A; et Ag, et pour les
variables A5 et Ag on réarrange les termes de I'équation principale ce qui nous
donne A;AgAsAsAgA; = —I. Or on a bien A} = A2 = AZ = I d’aprés la pre-
miére condition. Ce qui nous donne finalement I’absurdité I = —I. Ainsi par ce
raisonnement par 'absurde, on en déduit qu’il n’existe pas d’affectation quantique
satisfaisante, et donc par contraposée du théoréme, qu’il n’existe pas de stratégie
quantique parfaite pour ce jeu.
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A partir du moment ou il n’existe pas de stratégie quantique parfaite pour ce
jeu, d’aucuns pourront s’intéresser a trouver une stratégie quantique surpassant
les performances des stratégies classiques, pour ce jeu non resolvable parfaitement
de maniére classique ni quantique.

2.5 Minority game

Dans cette section, nous vous présenterons le jeu de la minorité, appelé Minority
Game en anglais. Nous tenterons d’expliquer l'origine et le principe général du jeu.
Nous introduirons ensuite, comme cela est fait pour le dilemme du prisonnier, le
formalisme mathématique qui nous permettra de mieux comprendre 'introduction
de stratégies quantiques. Nous étudierons enfin les résultats de 'introduction de
telles stratégies, pour 3 et 4 joueurs, puis nous terminerons sur les recherches qui
peuvent étre menées par rapport a ce jeu.

2.5.1 Origine et énoncé du jeu

Le jeu du Minority Game est en fait issu a la base du probléme du bar d’El
Farol. Ce probléme est un probléme connu de la théorie des jeux, créé en 1994 par
W. Brian Arthur, et inspiré d’un bar & San Fe au Nouveau Mexique. Le méme
probléme a été aussi formulé et résolu dynamiquement six ans auparavant [12].

Le probléme peut étre formulé comme suit : Soit un ensemble fini de personne,
appelé population. Tous les jeudis soir, toutes ces personnes désirent aller au bar
d’El Farol. Cependant, ce bar est assez petit, et il n’est alors plus intéressant de
se rendre au bar si celui-ci est déja assez rempli. On définit alors les préférences
des personnes selon les conditions suivantes :

—~  Si moins de 60% de la population se rend au bar, ils passeront tous un
meilleur moment que s’ils étaient restés a la maison.

— Si plus de 60% de la population se rend au bar, ils passeront tous un pire
moment que s’ils étaient restés a la maison.

De plus, et c’est ce qui rend la situation problématique, il est nécessaire pour
chacune des personnes de décider en méme temps si elle va ou non au bar. Elles ne
peuvent pas attendre la réponse des autres, pour un jeudi particulier, et prendre
leur décisions en fonction de cela.

Un aspect dans la resolution du probléme est que, si tout le monde utilise la
méme stratégie pure (totalement déterminée), cea est voué a I'échec. En effet, si la
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stratégie déterministe suggére que le bar ne sera pas rempli, alors tout le monde
ira au bar, et il sera alors rempli, et inversement.

En théorie des jeux, une des solutions envisageable pour ce genre de probléme
est d’utiliser ce que I'on appelle en anglais "a mixed strategy", ¢’est a dire affecter a
chaque stratégie pure une probabilité d’étre choisie. Dans le cas ot ’on ne considére
le probléme que pour un seul jeudi, on montre qu’il existe un unique Equilibre de
Nash symétrique pouvant étre atteint a 'aide d'une "mixed strategy" ol toutes les
personnes choisissent d’aller au bar avec une certaine probabilité. Cette derniére
dépend du nombre de personnes dans la population, du seuil & partir duquel on
considére que le bar est rempli, et des préférences relatives d’aller au bar rempli ou
vide, ou de rester chez soi. D’autres équilibres de Nash peuvent emmerger si une
ou plusieurs personnes choisissent d’utiliser une stratégie pure, mais ces équilibres
ne sont alors plus symétriques.

En outre, Herbert Gintis propose un certain nombre de variantes du probléme
dans son ouvrage. Dans certains variantes, les personnes peuvent communiquer
entre elles avant d’aller au bar. La subtilité de ces variantes est que les personnes
ne sont pas obligées de dire la vérité et peuvent donc utiliser le bluff pour maximiser
leurs chances d’étre satisfaites.

Le Minority Game peut alors étre vu comme une variante du probléme ci-
dessus, ou sa formulation mathématique. Soit N le nombre de joueurs, correspon-
dant & la taille de la population. Chaque joueur choisit de maniére privée une des
deux répones : 0 ou 1. Les choix sont alors comparés, et les joueurs dont le choix
est minoritaire gagnent. Si tous les joueurs font le méme choix, ou s’il y a le méme
nombre de joueurs pour chaque choix, alors il n’y a pas de gagnants.

La configuration de jeu la plus répandue est lorsque le jeu est répété sur plu-
sieurs tours. Chaque joueur n’a qu’un choix limité de stratégies, et chaque joueur
ne sait rien sur les autres joueurs. Leurs décisions se basent alors sur les précédents
cas de gain et sur la performance de leurs stratégies dans le passé. Dans notre cas,
on s’intéresse uniquement au cas ou les joueurs ne jouent qu’une seule fois.

2.5.2 Mise en place du jeu quantique

Dans cette sous-section, on posera toute la théorie permettant de définir la
version quantique du MinorityGame. Tout ce formalisme est commun & la théorie
des jeux quantiques (comme le Dilemme du Prisonnier quantique par exemple) et
dans ce cas est issue du travail de Benjamin & Hayden [13].
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On pose alors N le nombre de joueurs au Minorty Game. On définit un profil
de stratégie, une affectation du vecteur s = (s1,89,...,5y), avec s; la stratégie
du joueur ¢. On parlera d’équilibre complet ou "pur" pour désigner de maniére
théorie un profil de stratégie avec un certain degré de stabilité, comme par exemple
I’équilibre de Nash. La version du jeu, comme précisé ci-dessus, est considérée
comme statique : le jeu n’est joué qu'une seule, et on ne prend donc pas en compte
I’historique des autres parties. De plus, chaque joueur a une connaissance compléte
de la structure du jeu.

—~~~
D

classical bits
o
measurement

qubits in zero state
measurement

FIGURE 2.5 — Modéles de jeux classiques et quantiques

Sur la figure (a), un modéle de jeu classique général est présenté. Chaque joueur
recoit un bit initialisé & 0, et n’a que deux possibilités d’action par manipulation
locale : inverser le bit (ce qui donne ) ou le laisse tel quel (ce qui donne 0). Ensuite
chaque joueur renvoie son bit pour ’état de mesure final ou les gains seront alors
calculés. Sur la figure (b), est représenté la définition générale d’un jeu quantique
a N joueurs.

Ainsi, pour passer du jeu classique au jeu quantique, le support de I'informa-
tion classique (le bit) doit étre remplacé par le qubit, tout d’abord. Ensuite, ces
qubits doivent étre mutuellement intriqués. S’ils ne le sont pas, on peut alors bien
retrouver une modélisation quuantique du jeu classique, mais oli ancune stratégie
quantique plus performante ne pourra étre mise en place, car on n’agirait que sur
chaque qubit séparement pour chaque joueur. Cependant, le jeu quantique que ’'on
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veut mettre en place doit tout de méme étre une généralisation du jeu classique :
on dira que le jeu quantique doit contenir le jeu classique. L’opérateur qui cor-
respond donc & ne pas altérer le bit 0 classique sera I'opérateur unitaire identité
en quantique. De méme, 'opérateur X = oy, opérateur NOT ou opérateur X de
Pauli, doit correspondre a inverser le bit 0 en classique et donc avoir le bit 1. De
ce fait, si on restreint les stratégies possibles pour les joueurs aux portes {I, X },
on retrouve les gains du jeu classique.

D’autre part, et afin d’établir une correlation entre les qubits en entrée, on
utilise la paire de portes quantiques présentées précédement. En effet, comme preé-
senté sur la figure (b), c’est la porte JyN qui se chargera d’intriquer les qubits
initialisés a |0). Si on se restreint aux portes unitaires introduisant une intrication
maximale, agissant symétriquement sur |1) et |0), on peut alors I’écrire de maniére
générale :

1 .
JN — _([®N —I-ZX®N)
V2

Les N joueurs partageront donc en réalité un état [¢)) maximalement intriqué

équivalent a |GHZy) exprimé par :

) = IO = = (19910 + X V0 ) = = (1) + i)

A partir de 14, on préférera utiliser des stratégies déterministes modélisées par
des matrices unitaires & appliquer sur son qubit pour chaque joueur. L’utilisation
de ce type de stratégie permet de ne pas détruire l'intrication introduite par la
porte Jy. De plus, des équilibres "purs" ne peuvent étre atteinte qu'uniquement a
partir de portes unitaires.

2.5.3 Casou N =3

Dans le cas ot N = 3 personnes jouent au Minority Game, on montre que
lintroduction d’une stratégie quantique n’apporte pas de nouvel équilibre "pur".

Effectivement, on peut tout d’abord définir la stratégie pure la plus générale
pour le joueur ¢ par

ol tous les «;, Bi, Vi, G, w; et 0; des coefficents réels tels que :
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of + ¢ =B+ =i+ 07 =1

En appliquant la porte J3 a I'état |¢)) partagé par les 3 joueurs et aprés sim-
plification des termes, on remarque alors que les coefficients 3, v, varphi, 6 es
simplifient et disparaissent. Ceci nous ameéne a avoir une probabilité p; que le
joueur 1 soit minoritaire de :

1= <C1a2a3)2 + <04142C3)2

Les résultats pour les joueurs 2 et 3 se calculent de maniére analogue. On
remarque alors que ce sont les mémes probabilités que celles attendues dans le jeu
classique, si on pose o® comme la probabilité d’inverser le bit 0 en classique (donc
la probabilité d’obtenir 1).

Finalement, les paramétres supplémentaires introduits par les stratégies quan-
tiques n’apportent aucun avantage, et le jeu quantique se résume alors simplement
a la version classique, dans le cas o N = 3.

2.5.4 Casou /N =4

La situation ol 4 personnes sont invitées a jouer au jeu de la minorité est
différente du cas précédent dans la mesure ot 'introduction de stratégies quantique
aura une importance sur l'issue du jeu pour les joueurs.

Sil'on s’intéresse dans un premier temps aux stratégies classiques possibles, les
joueurs n’ont en fait de meilleur chois que de choisir aléatoirement et uniformément
entre répondre {0} (ne pas aller au bar) ou {1} (y aller). Si on liste alors toutes les
possibilités de réponses pour les 4 joueurs (2* = 16 au total), et que ’on compte le
nombre de cas ol un joueur ¢ est gagnant, on remarque que cela n’intervient que
dans 12—6 = % des cas. De plus, dans la moitié des cas, personne ne peut gagner car
soit tous les joueurs envoient la méme réponse, soit 2 répondent {0} et 2 répondent

{1}.

Cependant, lorsque 'on passe a la version quantique du jeu, on découvre alors
un équilibre totalement "pur". Par exemple, si le profil de stratégie est s=(a,a,a,a)
avec :

o= % cos (1%) (I+iX)+ % sin (1%) (Y —iZ)

alors 1’état final partagé obtenu est :
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1
) = ﬁ<|1ooo> + 10100) + 0010) + [0001) — [1110) — [1101) — [1011) — [0111) )

Parmi ces 8 états, 2 sont optimaux pour chaque joueur, ce qui nous améne a
une probabilité de gain pour chaque joueur de % = }l, c’est a dire le double de la
perfomance maximale en stratégie classique. Par ailleurs, on a supprimé tous les
états qui n’amenaient aucun gain pour aucun des joueurs grace a cette stratégie

(c’est pourquoi la probabilité de gagner double).

Par ailleurs, lorsque les joueurs jouent tous la stratégie a, on obtient un réel
équilibre de Nash. En effet, si un joueur décide de changer unilatéralement de
stratégie, il ne peut alors pas améliorer ses résultats, quelque soit la stratégie
choisie, unitaire ou non-unitaire (préservant la trace et completement positive).

Ainsi, en passant de N = 3 & N = 4, un équilibre de Nash, non atteignable
avec des stratégies classiques, émerge. Cet équilibre est aussi un équilibre optimal
et équitable, dans la mesure ol le gain est le méme pour les 4 joueurs. Une fois
encore, on constate que le partage d’un état intriqué et I'introduction de stratégies
quantiques permettent de surpasser les stratégies classiques.

2.5.5 Ouvertures

Une généralisation du Minority Game dans sa version quantique pour N serait
intéressante a mettre place. Comme préssenti pour N = 3, si le nombre de joueurs
est impair, la version quantique n’est pas avantagée par rapport au jeu classique.
Un nouvel équilibre de Nash apparait en revanche pour un nombre pair de joueurs,
et 'on peut étudier de plus preés la stabilité de cet équilibre en fonction du nombre
de joueurs N, en introduisant différentes formes de décohérence, comme cela est
traité dans [15].

On pourrait également s’intéresser aux performances obtenues lorsques les
joueurs ne partagent pas un état maximalement intriqué. Chen et al. montrent
que 'on n’obtient pas d’avantage par rapport au cas classique lorsque N est im-
pair, mais que l'on peut avoir de meilleurs résultats que dans le cas classique
lorsque N est pair, méme si 'on n’atteint pas d’équilibre [1].

Par ailleurs, ce jeu peut avoir des applications dans divers domaines. Une des
applications assez connue et dans le domaine de 1’économie et les marchers finan-
ciers, ot I'on modélise le marché avec un Minority Game et on utilise alors ce
modéle pour gérer le transfert de bien et I'allocation des ressources [18].
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On peut aussi étudier le jeu du point de vue de la position des joueurs entre
eux. Selon si 'on suppose que les joueurs sont en compétition ou en coopération,
les stratégies proposées peuvent évoluer. C’est ce que tente d’investiguer Linde
et al. dans [19], et d’étudier des stratégies sur la version du jeu a plusieurs tours.
Flitney & Greentree étudient quant a eux I'influence des coalitions sur les résultats
du jeu, notamment en comparant les résultats quantiques et classiques [16].

Enfin, on peut étudier 'influence de I'environnement d'un joueur et de la cor-
rélation du systéme quantique partagé par les joueurs et voir les répercutions sur
les performances du jeu [17].

2.6 Autres jeux quantiques

2.6.1 Paradoxe de Parrondo - Parrondo’s game

Nous allons, dans cette partie, présenter I'un des paradoxes les plus connus pour
son originalité et son "étrangeté" extréme : Paradoxe de Parrondo®. Ce dernier
met en avant I'idée que deux jeux, considérés comme perdants (i.e, le joueur a une
probabilité de perdre supérieure a celle de gagner) séparément, deviennent gagnant
lorsque 'ont les associent, certes d’une maniére trés particuliére.

Déroulement du jeu classique

Tout d’abord, nous devons exposer et présenter les deux jeux pris séparement

afin de pouvoir expliquer le jeu de Parrondo convenablement.
— Jeu A

Ce premier jeu, 'un des plus simple, consiste au lancer d’une piéce. La proba-
bilté afin d’obtenir "pile" (i.e., gagner) est considérée égale & p4. A I'inverse,
la probabilté d’obtenir "face" (i.e., perdre) est considérée égale & (1 — pa).
Afin que le jeu soit perdant, nous allons imposer la condition suivante (cela
revient a utiliser des piéces truquées) : pa < %

— Jeu B dépendant du capital

Ce jeu va, quant a lui, utiliser deux piéces B et C. Ces derniéres se différen-
cient par leurs probabilités de gagner (pg # pc). Afin de savoir quelle piéce

1. Juan Manuel Rodriguez Parrondo (né le 09 Janvier 1964) est un physicien espagnol de
I’Université de Complutense de Madrid
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Jeu A
(pa,1-pa)

Gagne Perdu

FIGURE 2.6 — Jeu A

nous allons utiliser, il suffit de se réferrer au capital de gain (qui correspond
au nombre de fois gagnée moins celles perdues). En effet, si le capital est
divisble par 3, nous choisirons de lancer la piéce B. Par contre, s’il ne I'est
pas, alors nous lancerons la piéce C.

Jeu B
(gain divisible par 3_sinon)

(P5.1-Ps) (Pc.1-Pc)

N\ FAN
PN 7N
/ \, / A

Gagné Perdu Gagné Perdu

FIGURE 2.7 — Jeu B

On pourrait croire que le jeu B est gagnant. Mais il ne I'ai pas. En effet, ceci
peut étre prouvé de différentes maniéres, dont celle qui utilise la notion de
chaine de Markov.

— Association des jeux A et B
Comme nous 'avons cité précédemment, 'association des deux jeux per-
dants peut amener a un jeu gagnant. Ceci peut étre constaté par de simples
simulations numériques.

Nous constatons que legain tend a étre négatif lorsque 1’on joue les jeux A et

60



2.5

L 3. 2]
2 /__/._f 3.2]
— /__/__
1.5 adh 1042
,._/"/ s z Random
1T /'-/-_, - ——— ]
//__'/ -
- 1 [4.4]
) __""-——--________ T Game A
-15 L 1 . . —|Game B
o 20 40 60 80 100

Games Played

FIGURE 2.8 — Simulations de I’associations des jeux A et B. Le couple [a,b| indique
que nous jouons a fois le jeu A et ensuite b fois le jeu B et ainsi de suite jusqu’a
qu’on ai fait 100 jeux

B séparemment. Cependant, lorsque l'on joue le couple [3,2] ou [4,2], le gain
tend a étre positif et fait ainsi de lui un jeu gagnant.

Jeu B’ (dépendant de I'historique de jeu)

Une autre configuration est également possible. Elle consiste a utiliser un
nouveau jeu B, nommeée jeu B’. Il se différencie par la condition qui implique
I'utilisation de la piéce B ou C. En effet, nous allons, maintenant, nous réfer-
rer par rapport aux résultats des deux parties précédentes (gagné ou perdu)
afin de choisir la piéce B, C, D ou E. Le jeu A est identique & celui vu précé-
demment. Le principe des jeux peut étre représenté de la maniére suivante :

Association des jeux A et B’
Encore une fois, lorsque ’association des jeux est accomplie, nous obtenons

un jeu gagnant. En effet, nous pouvons constater ces résultats a 'aide des
simulations suivantes :
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Jeu A

JeuB'
(pa.1-pa) (Gagné, Percu)-2
Gagné Perdu (Gagné, Perdu):-1 (Gagné, Perdu)t-1
(p5.1-pB) (pc.1-pc) (pp.1-pD) (pe.1-pE)
/N 7\ /
Gagné Perdu Gagné Perdu Gagné Perdu Gagné Perdu
FIGURE 2.9 - Jeu A et B’
1.5
1t ~[2,1
| '__'__,:-'::'::.___..---'Random
5 0.5 |"-I \ P ~A[2,2]
- s 3.2
[
0
o — Game B’
—05F —
1 Game A
-1 . . . .
0 20 40 60 80 100

Games Played

FIGURE 2.10 — Simulations de 'associations des jeux A et B’. Le couple [a,b’|
indique que nous jouons a fois le jeu A et ensuite b’ fois le jeu B et ainsi de suite

jusqu’a qu’on ai fait 100 jeux
Déroulement du jeu quantique
— Jeu quantique dépendant du capital

Il est envisageable de transcrire ce jeu de maniére quantique. En effet, nous

pouvons représenter le jeu A et B sous la forme des circuits quantiques sui-
vants [50] :

Avec les différents paramétres définis de la maniére suivante :
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FIGURE 2.11 — Jeu quantique A
FIGURE 2.12 — Jeu quantique B

: n-qubits de registre qui représentent le gain pour chaque joueur n

) qutrit de registre auxiliaire qui permet de savoir si le gain est un multiple
de 3

— mod3 : Opérateur qui permet de modifier |o) si le gain est un multiple de

— X, A, B; et By : Portes quantiques ou opérateurs

— CID : Opérateur qui permet d’incrémenter, si |¢) est dans I’état [1), ou dé-
crementer, si |c) est dans 1'état |0), le capital de gain |$)

) : qubit de registre qui représente I’état d’une piéce quantique
)

_ |C
_ |$
_ |O

2.6.2 Guerre des sexes
Déroulement du jeu classique

Ce jeu aborde un probléme que rencontre deux conjoints : un homme et une
femme. Ces derniers voudraient partager une soirée ensemble. Cependant, I'en-
droit de rencontre n’est pas commun. L’homme veut aller voir un match de foot
tandis que la femme souhaiteriat aller a I’opéra. Ils veulent cependant vivre ce
moment a deux plutot que seul, peu importe la destination. Les deux ne peuvent
communiquer durant leurs choix.

Homme )
Femme Opéra | Foot
Opéra (a5 B) | (05 0)
Foot (o;0) | (B; )

Nous considérons que «, 3 et o sont les gains respectifs vis a vis de la stratégie
choisie. Pour répondre aux conditions imposés parle jeu, nous devons respecter
a > [ > o . 1l faut également noter que dans la notation choisie pour le tableau
(& savoir (Gain 1; Gain2)), le gain 1 et le gain 2 correspondent respectivement au
gain de la femme et de 'homme. L’objectif de chaque joueur est de maximiser son
gain individuel.
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Nous pouvons constater que ce jeu détient deux équilibres de Nash : (Opéra,Opéra)
et (Foot, Foot). De plus, il ne faut surtout pas que (O, P) ou (F,0) arrive. En effet,
le gain est minimal pour cette situation et cela pour les deux joueurs.

Déroulement du jeu quantique

Voici le circuit quantique qui représente les différentes étapes quantiques qui
correspond au jeu [51].

|0) v‘u}= U _
Fﬁ'

g

e] ‘wl) wa> %

",..E

0)———o———| U] N

FIGURE 2.13 — Circuit quantique : La guerre des sexes

Chaque joueur dispose d'un qubit. La stratégie "aller a 'opéra" correspond a
I'état du qubit |O) et "aller au foot" correspond a I'état du qubit |F'). Chaque
joueur détient une porte quantique qu’il peut appliqué a son qubit. Ces derniéres
sont notées Uy et Ug.

Cette formalisation quantique est trés similaire a celle vue précédemment pour
le dilemme du prisonnier. Par conséquent, nous n’énoncerons que les formules de
gain :

$4 = aPoo + BPrr + 0(Pro + 0PoF)
$4 = aPoo + BPrr + 0(Pro + 0Por)

Ainsi, de méme que le dilemme de prisonnier, les deux joueurs, homme et
femme, sont assurés d’avoir un gain maximal en appliquant une stratégie quan-
tique.

2.6.3 Spin flip game

Le Spin Flip Game (SFG), souvent reconnu comme étant le premier jeu quan-
tique, est un jeu faisant intervenir 2 joueurs A et B, et un électron. C’est un jeu
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non coopératif ot chaque joueur va chercher a gagner. Le résultat du jeu n’annoce
qu'un seul vaiqueur, et donc qu’un seul perdant. Le jeu se présente comme une
sorte de pile ou face, ot les joueurs vont manipuler & 1 ou 2 reprises I'orientation
du spin de I'électron.

Principe du jeu et stratégie "classique"

Le joueur A commence par orienter le spin de I’électron vers le haut, c.a.d.
vers létat |up) = |u). Le joueur B a ensuite deux possibilités : soit appliquer
la porte I (identité) ou X (not) au spin de l'électron dans I'état |u). On note
|down) = |d) = X|u). Ceci est pour le premier tour du jeu.

Pour le second tour du jeu, le joueur A, tout d’abord, a la possibilité & son
tour d’appliquer la porte I ou X. Ensuite seulement, le joueur B peut appliquer
la porte I ou X.

L’état de I'électron est ensuite mesuré. Comme nous le verrons plus tard, il
y a autant de chance d’obtenir le spin orienté vers le haut, qu’un spin orienté
vers le bas (simillairement au pile ou face). On suppose donc que si son spin est
orienté vers le haut, c’est a dire que I'on obtient |u), c’est le joueur A qui gagne.
Inversement, si le spin est orienté vers le bas, c¢’est a dire que 1'on obtient |d), ¢’est
le joueur B qui gagne. L’inverse donne le méme résultat en terme de gain.

|(A/B| 1T | IX | XI | XX |
I [ HOI[IIX | XII | XIX
X [IXT]IXX|XXI| XXX

FIGURE 2.14 — Portes quantiques finales a appliquer a I’état initial |u) en fonction
des stratégies des deux joueurs

En appliquant chacune des portes correspondant a chacune des possibilités de
stratégies choisies par les joueurs, on obtient les états finaux suivants :

[A/ B I [IX [ XI[XX]
L || ]d) | |d) | |
X [ ld) [ w) | Jw | |d)

FIGURE 2.15 — Etat final du spin de I’électron mesuré en fonction des stratégies
des deux joueurs

En suppose que si A gagne il remporte un gain de +1, et un gain de -1 si il
perd, on obtient le tableau de gain suivant pour le joueur A :
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|A/B| I [IX]|XI]| XX |
I [ +1]-1][-1] +1
X [ =L[+1|+1] ~1

FIGURE 2.16 — Tableau de gain pour le joueur A

On remarque que le joueur A a une chance sur deux de gagner quelque soit sa
stratégie adpotée, et il en est de méme pour le joueur B. On retrouve donc le jeu
du pile ou face que 'on connait usuellement ;

Utilisation d’une stratégie quantique

L’introduction d’une stratégie quantique, comme on peut s’y attendre, va ame-
ner une amélioration de la performance du joueur l'utilisant. Suppose que c’est
le joueur B qui décide de passer a une stratégie quantique. Contrairement a pré-
cédemment, le joueur B misera toujours sur un spin de ’électron orienté vers le
haut. Le joueur A gagne donc si le spin est orienté vers le bas.

Ainsi, durant le premier tour, le joueur A place toujours le spin en position
haut |u). A présent, le joueur B choisir d’appliquer la porte H d’Hadamard au

lieu de I ou X. Il en résulte donc I'état suivant : H|u) = \/Li(|u) + |d>)

Pour le second tour, A a le choix d’appliquer la porte I ou X. Dans les deux
cas, I’état résultant reste inchangé par rapport au précédent dans la mesure ot :
I(H|u)) = X(H|u)) = Hl|u). Le joueur B rejoue a son tour avec la stratégie
précédente, dans le sens ou il ré-applique la porte H a I’état précédent, ce qui nous
donne I'état suivant : H(H|u)) = H?u) = |u).

Ainsi avec cette stratégie, le joueur B est assuré de gagner au jeu du pile ou
face, ou plutot au jeu d’orientation du spin, ce qui n’est pas possible avec des
stratégies classiques. Une fois encore, I'utilisation de stratégies quantiques prouve
la puissance et l'efficacité de travailler dans un monde quantique.
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2.6.4 Jeux quantiques restants

Nom du Résumé, nombre Références
jeu de joueurs
Jeu a 2 joueurs, Bob place une balle dans 1 sur 4
Wise emplacements. Alice pose une question fermée a
Alice Bob. S’il répond oui, Alice est satisfaite, sinon elle , 26, 27,
game peut demander un dédomagement. Bob peut bouger la
balle & une place adjacente aprés la question d’Alice.
Quantum Jeu a 2 joueurs, un vendeur et un acheteur. Le
Bargaining vendeur négocie avec I'acheteur pour le prix : faire [30, 31, 32]
game des affaires pour plus tard et/ou user de chantage.
Jeu a 2 joueurs, un proposeur et un répondeur.
Quantum Le proposeur doit répartir 100 unités entre lui et
Ultimatum | P'autre joueur, et fait une proposition au répondeur. , 21, 22, 23,
game S’il accepte, alors les unités sont distribuées.

S’il n’accepte pas, personne ne gagne rien.

FIGURE 2.17 — Tableau regroupant les derniers jeux quantiques présentés dans ce

chapitre
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Deuxiéme partie

Applications au domaine de ’énergie
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Chapitre 3

Sécurité et Smart Grid

Le réseau électrique (de 1’énergie primaire jusqu’au consommateur final) ac-
tuel n’est pas durable dans le temps, tant au niveau environnemental, économique
ou encore social. Par conséquent, le développement d’un nouveau type de réseau,
réseau nommé intelligent (plus connu sous le nom de "Smart grid"), est primor-
dial. Celui-ci devra face aux différents challenges énergétiques. C’est ce que nous
proposons d’étudier dans ce chapitre.

3.1 Présentation du réseau intelligent ou Smart
Grid

Dans cette partie, nous allons présenter un type de réseau électrique en actuel
développement : "Smart Grid" ou réseau intelligent. Ce dernier peut étre présenté
comme un réseau électrique qui utilise différentes technologies afin de rendre les
opérations optimales (ou plus efficace), que ce soit au niveau de la production,
distribution ou encore au niveau de la consommation. Ces différents processus
sont coordonnés de maniére autonome. La promesse européenne pour 2020, afin
de réduire de 20% des gaz & émissions de serres; augmenter la production totale
en énergies renouvelables a hauteur de 20 % également et une réduction de 20% de
la consommation totale énergétique, pourrait étre tenue et méme améliorée dans
le futur avec I'implémentation d’un tel réseau.

3.1.1 Intéréts principaux d’un nouveau type de réseau
Intégration de centres de production décentralisés

La production électrique fournie par le réseau actuel dépend fortement et mal-
heureusement des ressources fossiles, qui ne cessent de diminuer. En effet, le sys-
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téeme électrique francais repose sur une production électrique assez centralisée
autour de centrales trés puissantes. Par conséquent, au vu de son incapacité a
accueillir un grand nombre de source d’énergie renouvelable intermittente, il est
plus que nécessaire de réfléchir & un nouveau type de réseau qui saurait répondre
a ce type de besoin. Le réseau intelligent permet d’intégrer, non seulement, des
moyens de production de grande ampleur et centralisé (par exemple des centrales
nucléaires) mais également des plus petites installations telles que les systémes
d’énergie renouvelable ou les productions venant des consommateurs eux-mémes
(ainsi rendre possible la création de millions de micro sources d’énergie). Il faut
également noté que le réseau actuel ne permettra pas de subvenir aux besoins
électriques futurs qui vont augmenter de maniére assez conséquente.

Gestion de la demande et utilisation de technologies d’informations et
de communications

Les types de réseau actuels permettent la navigation d’énergie uniquement dans
un seul sens (du producteur vers le consommateur). Tandis que le réseau intelligent
permettrait de favoriser le développement de producteurs d’énergie & petite échelle
en ayant la capacité de faire circuler I’énergie dans les deux sens.

Les consommateurs vont jouer un role important au sein du réseau intelligent.
Ils vont permettre d’avoir plus d’informations sur le profil de consommation et
ainsi ajuster la production. Ceci afin d’atteindre une production qui s’approche
le plus de la consommation, c¢’est-a-dire un équilibre entre I'offre et la demande,
et éviter les pics de demande. Dans cette nouvelle configuration, nous pourrions
envisager une tarification variable de I’électricité en fonction de I'heure d’utilisa-
tion. Afin de pouvoir rendre cela possible, différentes technologies devront intégrer
les installations des consommateurs dont notamment les "Smartmeters". Ces der-
niers permettront de mesurer la quantité d’énergie consommeée par les utilisateurs
et également avoir une fonction de régulateur sur la consommation. En effet, le
consommateur pourra également modifier sa demande d’électricité a l'aide des
données récoltées en temps réel.

Intégration des bornes de recharges pour les véhicules électriques

L’introduction des véhicules électriques est aussi favorisée par les réseaux in-
telligents. La communication entre le réseau et les véhicules est primordiale pour
pouvoir agir correctement. On pourrait imaginer que Iénergie stockée (mais non
utilisée par les véhicules) pourrait étre utilisée en cas de besoin par le réseau élec-
trique (ce principe est nommé le V2G : "Vehicle to Grid"). Il faut noter également
que l'introduction des véhicules électriques permettrait la réduction des gaz a effet
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FIGURE 3.1 — Flux d’énergie et d’information (Source ERDF)

de serre.

Efficacité et incidents sur le réseau

Par ailleurs, ce réseau permettrait également de réduire les pertes d’énergie et
de détecter plus rapidement les problémes grace a une prise d’information sur le
réseau complet.

3.1.2 Description du systéme

Nous pouvons représenter ’évolution du réseau électrique comme suit [58] :
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FIGURE 3.2 — Evolution du réseau électrique

La différence principale repose sur les flux d’action. En effet, le réseau in-
telligent posséde un flux de transmission d’électricité mais également d’un flux
d’informations. Ce dernier va permettre de coordonner la production d’électricité
et la consommation réelle.

3.1.3 Différents secteurs affectés

Nous pouvons distinguer les différents axes, sur lesquels ce type de réseau in-
fluerait grandement, et ceci est representé dans la figure suivante [58] :

3.1.4 Smartgrid en France

La France se place parmi 'un des pays les plus avancés dans la recherche
et le développement des applications du réseau intelligent. Cette partie visera a
présenter briévement quelques projets déja en cours.

Programme Linky

L’installation de plus de 35 millions de compteurs intelligent (ou communicant)
d’ici 2021 est une initiative dévelopée par ENEDIS (anciennement ERDF). Ce
projet a été lancé en 2007 et a été déployé depuis le ler Janvier 2015. L’utilisation
d’un tel outil permettrait une gestion plus optimisée de la consommation électrique.
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FIGURE 3.3 — Domaines d’applications des technologies des Smartgrids

Ce dernier peut également jouer un role d’actionneur en décalant certains usages
des consommateurs afin de répondre au mieux a un pic de consommation.

Sur la figure suivante, nous pouvons voir le role joué par le compteur intelligent :

Ce compteur utilise le moyen de communication que 'on appelle CPL (Cou-
rant Porteur en Ligne). Ce type d’usage permet de transmettre et recevoir des
informations via les cables électriques. Nous ajoutons simplement un signal élec-
trique (qui transporte 'information) au flux électrique. L’Union Internationale des
Communications a opté pour le protocole de communication G3, qui plus est le
seul supportant le protocole IPv6 qui permet d’assurer via internet la gestion des
compteurs.
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FIGURE 3.4 — Place du compteur intelligent (Source CRE)

Projet Nice Grid : Quartier solaire intelligent

Nice GRid est un projet développé a Carros depuis 2011. Celui-ci implique
1500 consommateurs résidentiels, tertiaires et industriels dont 300 foyers et 11
clients industriels. Celui-ci est piloté par Enedis et fait partie du projet européen
Grid4EU. L’investissement total correpond a environ 30 millions d’euros.

Ce projet a pour but d’optimiser I'exploitation d’un réseau de distribution éle-
trique en incluant des sources d’énergies renouvelables (dont tout particuliérement
celle produite par les panneaux photovoltaiques). La gestion de la demande, en
faisant contribuer les consommateurs dans la boucle d’action, est également dé-
veloppée afin de de réduire les pics de consommations au niveau local. Ce projet
vise aussi a tester les possibilités d’ilotage de ce type de réseau et d’observer son
comportement dans une telle situation.

Le systéme global du systéme est représenté ci-dessous |[72] :

Le déploiement des différentes technologies et les différents tests éffectués sont
présentés sur la figure suivante [72] :
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FIGURE 3.5 — Systéme global

Projet GreenLys

Ce projet, dont I'investissement correspond & 43 millions d’euros, a été lancé
en 2012 par ENEDIS (et d’autres participants tels que ENGIE, Schneider, GEG
,...etc) sur les villes de Lyon et Grenoble afin d’étudier le comportement des tech-
nonologies des Smart grids en zone urbaine et conditions réelles. Parmi celles-ci,
nous pouvons retrouver le systéme Linky, les outils de gestion en temps réel du
réseau, les moyens mis en place afin d’accueillir sur le réseau les sources de pro-
ductions d’énergies renouvelables ainsi que les bornes de charges de véhicules, et
enfin les outils qui permettent les "effacements" de consommation afin d’équilibrer
loffre et la demande.

Les étapes clés du projet sont résumées ci-dessous :

Projet IssyGrid : Quartier intelligent

IssyGrid est un projet lancé en 2012 au sein de la ville de Issy-Les-Moulineaux.
ce dernier vise a tester le fonctionnement du Smart grid a I’échelle de quartier, plus
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TECHNOLOGIES INSTALLEES
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FIGURE 3.7 — Déroulement du projet (Source ENEDIS)

précisément ceux de Seine Ouest et Fort d’'Issy. Ce systéme gére la consommation
et production d’énergie d’environ 2 000 habitants et 5 000 employés sur une surface
100 00 m?2.

Le systéme global peut étre représenté de la maniére suivante :

Celui-ci vise & gérer au mieux la consommation en incluant les nouveaux types
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FIGURE 3.8 — Systéme global (Source ISSY)

d’usage (par exemple les véhicules électriques), intégrer les sources de production
d’énergie renouvelables et optimiser la gestion de I'énergie au sein des quartiers.

Les étapes clés du projet sont résumeées ci-dessous :
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FIGURE 3.9 — Etapes clés du projetl (Source ENEDIS)
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3.1.5 Prédictions pour le futur

Voici un tableau qui résume I’évolution des "Smart Grids" qui devrait avoir

lieu [54] :

Smart meters, demand
response, models for demand
forecasting

Communications through
public communication
networks, sporadic dedicated
fiber channels laid down by
utility, and wireless routers
Deployment of sensors using
fiber and wireless
communication for data
collection

Wireless embraced actively
due to low cost of installation
with fiber penetrating slowly
New appliances with
communication devices allow
controls through smart
meters

Existing appliances retrofitted
with communication that
allow to be turned on and off
ata minimum

Household communications
will be wireless and/or power
line communication (PLC).
Data will be encrypted from
the smart meter throughout
the entire grid

Integrity of the will be
managed through data
checksums and comparison
Availability of data will be
ensured through backup
communication channels

Smart meters using
dedicated communication
channels

Demand response across
various grids, data analysis
and aggregation for
demand forecasting

Need higher bandwidth
need to support demand
forecasting and market
pricing

Metropolitan areas
continue to see
proliferation of wireless
communication

Fiber either embedded in
electric cables or strung
along power lines to carry
data from sensors and
supporting renewable
integration

PLC may emerge as the
backup communication
channel

Bandwidth increased to
process data for real-time
supply forecasting
Communication enabled
intelligence appliances will
dominate the market

PLC and wireless will lead
communication channels in
the household.

Data security a key concern
with new threats to the
integrity of data
Dataintegrity checks based
on past patterns and
redundant readings
Vulnerabilities in wireless
will lead to a gradual shift
towards fiber.

Smart meters pervasive
across households
Applications for
sophisticated demand-
response and
demand/supply forecasting.
Real-time electricity market
will add additional burden
to communication

Grid communication
network will be controlled
by the utilities,

Sensors for monitoring and
diagnostics with self-
healing and self-recovery
Intelligent computation
pervasive in the network
Communication will
primarily be fiber through
the grid with wireless
communicationin pockets.
Substations will use
wireless and wired
communication for data
collection

Aggregated datasent via
fiber to processing centers
PLC will be used for backup
communication

The transmission and
distribution
communications networks
will start coalescing into a
single network.

Household appliances will
use either wireless or PLC
communication.

Wireless actively replaced
by fiber in most areas for
increased security

FI1GURE 3.10 — Evolution des Smart Grids
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3.2 Sécurisation des Smart Grid

L’introduction des technologies de communication au sein des réseaux intel-
ligents permet d’améliorer le fonctionnement du systéme global tout en le ren-
dant plus vulnérable au cyber attaques. Par conséquent, il est plus que nécessaire
d’étudier et de rendre plus fiable le niveau de sécurité au sein du réseau [51|. Les
performances des Smart Grids dépendent fortement de 'information transmise. Si
celle-ci est corrompue, les performances du réseau en sont fortement perturbées.

La sécurité n’est pas un sujet nouveau au niveau technologique. Par conséquent,
on pourrait tout simplement envisager de protéger le réseau électrique intelligent en
utilisant les mémes moyens employés que pour Internet. Cependant cela n’est pas la
meilleure et la plus adéquate des solutions au vu des caractéristiques, complétement
différentes d’Internet, que présente les Smart grids. Par conséquent, il faut opter
pour de nouveaux types de cryptages d’informations.

Nous pouvons distinguer deux types de cryptage qui se différencie par la ma-
niére dont I’on distribue les clés de codage : clé privée et clé publique. La premiére,
nommée clé privée, consiste & utiliser la méme clé afin de coder et décoder le mes-
sage (U'information). Alors que la clé publique utilise différentes clés pour coder
et décoder le message. A partir de 14, nous pouvons constater qu’en utilisant la
clé privée, nous devons impérativement se partager la clé de cryptage avant que
le message soit crypté (a 1'aide d’une rencontre physique ou d’un canal sécurisé
par exemple). A U'inverse, la clé publique permet d’éviter ce partage en rendant
"publique" la clé de codage alors que celle de décodage est privée (les deux clés
sont reliées de maniére mathématique). Il est cependant possible de "hacker" ce
genre de clé en utilisant des moyens sophistiqués, qui prennent, par ailleurs, un
certain de temps dépendant de la complexité numérique. Ce type de cryptage n’est
donc pas totalement fiable.

Néanmoins, la théorie de 'information quantique apporte des solutions majeurs
vis-a-vis de la cryptographie. En effet, la distribution de clés quantique semble étre
un moyen adapté afin de sécuriser au mieux les transferts d’informations, tel que
dans un Smart grid.

Dans Particle [55], il a été démontré expérimentallement que ce type de moyen
peut étre envisagé afin de répondre convenablement a la demande en terme de
sécurité, en utilisant notamment le protocole de communication sécurisé quantique
BB84 1.4
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3.3 Communiquer plus d’informations avec le Su-
perdense Coding

Une des problématiques, et un des enjeux de la recherche dans ce domaine, et
I’amélioration et I'optimisation de la qualité, de la quantité et de ’architecture des
communications mises en place pour permettre le fonctionnement efficace et sir
d’un systéme déployé sur un réseau, comme celui des Smart Grids.

Une des propositions que la théorie de 'information quantique peut formuler,
est la transmission d’information contenant elle méme de 'information : c’est le
principe du Superdense Coding (voir section 1.3 pour la procédure détaillée pour
les 2 qubits). En transmettant des qubits ou des qudits (généralisation du qubit
a d états de bases) d’information issus d’un état intriqué partagé avec le destina-
taire, on peut & ’aide du protocle de Superdense Coding faire émerger un surplus
d’information par rapport a la quantité de qubits ou qudits envoyés initialement.

Pour I’étude des différents cas d’application proposés, nous nous placerons alors
dans un cas de communication ol un certain nombre d’entités doivent communi-
quer des informations & un controlleur, ou a une autre entité de méme niveau. Afin
de simplifier la présentation, nous supposerons que deux entités A et B doivent
communiquer des informations sur leur fonctionnement a une unité S. Ce schéma
peut étre adapté en ajoutant une communication bi-latérale et en ajoutant des
entités communiquantes supplémentaires, le principe restera alors le méme.

7N

FIGURE 3.11 — Schéma du systéme simplifié de communication
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3.3.1 Communication avec 4 choix de messages

Supposons que les deux entités A et B veulent communiquer avec S, mais n’ont
besoin que de 4 messages au total. Dans ce cas, ils peuvent choisir de mettre en
place un Superdense coding a 2-qubits classique, afin de gagner en quantité et donc
en rapidité de transfert d’information avec un rapport de 2.

Pour ce faire, il faut que A et S partagent un état de Bell |11), ¢’est a dire :
1
V2

De la méme maniére, B et S doivent également partager un état de Bell [)9)
tel que :

1) = 5= (1040s,) + [1a1s1) )

1

V2

Les 4 messages possibles que A et B peuvent communiquer sont : [00), |01),
|10) et |11). Chaque 2-qubit sera interprété comme un message lié a la production,
a un besoin d’énergie, ou a tout autre type de message pouvant étre communiqué
dans un Smart Grid. Une fois le message choisi, chaque entité applique le protocole
de Superdense coding avec S :

92) = —=(10505,) + 1515,))

— A manipule et envoie son qubit a S
— B manipule et envoie son qubit a S
— S regoit le qubit de A et manipule I’état intriqué [¢;) puis mesure
— S recoit le qubit de B et manipule I'état intriqué |1)9) puis mesure

Ainsi, au total, A envoie 1 qubit d’information, B envoie 1 qubit d’information,
S décode le tout et recoit donc au total 2 X 2 qubits d’information. Nous avons
donc bien un gain de 2, dans la mesure o 'on envoie 2 "unités" d’information
pour en recevoir 4 au final.

Cela peut donc permettre de doubler Pefficacité des communications en terme
de quantité d’information envoyée, et peut éventuellement permettre d’optimiser
les systémes de type Grid en terme de réponse & une demande, ou d’organisation
interne des unités de production, du controle de la consommation, et de maniére
générale, tous les aspects utilisant une quelconque communication.
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3.3.2 Communication générale dans un systéme

Dans cette sous-section, nous tenterons de présenter une maniére théorique
d’utiliser le Superdense coding & 2-qubits (classique) et a n-qudits afin de pou-
voir transmettre le message voulu avec gain d’information, tout en bénéficiant du
nombre de messages non limité pour une communication compléte.

Si la variété du nombre de message voulant étre transmi est M = 4, on utilisera
alors le Superdense coding classique & 2-qubits. Si le nombre M est inférieur ou égal
a 2, on ne peut réduire la quantité de qubit a envoyer, et il suffira alors d’envoyer
le qubit correspondant au message. Si le nombre M est égal a 3, on utilisera alors
toujours le méme protocole de Superdence coding avec 2-qubits, sauf que les unités
A et B ne manipuleront leur qubit que de 3 maniéres différentes pour les 3 messages
possibles.

Supposons maintenant que 'unité A ou B communiquent de maniére classique
avec S, comme le feraient les composants électroniques d’un systéme d’informa-
tique industriel, ou comme cela s’oppére entre un microcontroleur et des capteurs
ou tout composant éléctronique. Ils communiquent le plus souvent a 'aide de pro-
tocoles de communication trés précis, utilisant des registres de données, et des
registres d’adresses par exemple, le tout en binaire. Un message sera alors envoyé
sous la forme d’une séquence de bits, et on pourra découper le message global
pour en déduire 'identifiant de 'expéditeur, le message en lui méme, la partie de
controle de la séquence, etc.

Si 'on suppose que la taille T' de la séquence de bits a envoyer est paire, et
T = 2k avec k € N, et si 'on veut substituer cette communication classique
par une communication utilisant le Superdense-coding, il suffira alors de décou-
per cette séquence en k parties de 2-bits. Ensuite, pour chaque paire de bits, on
applique le Superdense coding classique a 2 qubits. Ainsi, au lieu d’envoyer 2k
bits d’information, on envoie a la place k qubits d’information, ce qui réduit la
quantité d’information transmise. Les deux communiquant A/B et S devront en
outre partager autant de systémes intriqués pour mettre en place le Superdense
coding.

Si la taille de bits a transmettre s’avére impaire, donc 7' = 2k+1, avec k € N, il
suffira donc de transmettre classiquement le premier bit d’information, et ensuite
d’appliquer le méme processus que ci-dessus aux 2k bits restants. Cette fois-ci, on

devra transmettre au final k+ 1 unités d’informations (1 bit ou qubit, et k qubits).

On peut imaginer aussi, a la place d'un découpage de la séquence de bits a
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envoyer, de mettre un place un protocole de Superdense coding a n-qudits en
fonction de la taille de la séquence, pour n’envoyer de I'information qu’une seule
fois, et que 'unité S ne décode I'information totale qu’une seule. Ceci nécessite
cependant de disposer d’une connaissance théorique du protocole de Superdense
coding dans le cas général d'un systéme a n-qudits et de pouvoir le réaliser expé-
rimentalement lorsque la taille des données & transmettre s’agrandit. On pourrait
cependant imaginer le méme type de découpage que pour les 2-qubits, mais avec
n-qubits par exemple. On gagnerait alors en temps d’encodage/décodage en ap-
pliquant les portes et les mesures pour plusieurs qubits a la fois.

Les idées présentées de maniére générales ci-dessus pourraient donc servir a
optimiser de maniére quantitative les communications présentes dans les systémes
de types Smart Grid. On pourrait se poser la question de la qualité et de la sécurité
des ressources partagées. Pour ce qui est de la sécurité, nous abordons le sujet
dans la sectio 3.2. En terme de qualité des données transmises, une idée possible
serait d’utiliser le domaine de la correction de code aussi appelé codes correcteurs,
notamment les codes quantiques, et tentant de retrouver le code initial & partir de
d’un code bruité, ou déterrioré, par décohérence par exemple [68].
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Chapitre 4

Allocation des ressources

4.1 Problématique de ’allocation des ressources et
théorie des jeux

"L’allocation des ressources est un concept économique qui concerne 'utilisa-
tion des ressources rares et notamment les facteurs de production (travail, capital,
matiéres premiéres) pour satisfaire & court et long terme les besoins de consom-
mation de la population [70]." Ce concept peut étre associé a I’énergie, en parlant
d’allocaion des ressources énergétiques.

"Cette allocation demande, dés que 'activité économique atteint une certaine
taille et complexité, de définir un mode d’arbitrage autre que la guerre ou la rapine,
et donc des institutions sociales adaptées. Cet arbitrage se fait de fagon plus ou
moins libre, par le biais des prix de marché, le fonctionnement de ces marchés étant
eux-meémes formalisés par des régles de droit ; ou par les administrations d’Etat, a
laide de régles ou de lois.

Dans un sens plus étroit, ’allocation des ressources peut concerner 1’arbitrage
entre les divers facteurs de production, voire les choix et dosages & faire a l'intérieur
d’un type de facteur."

C’est dans ce cadre que 'introduction de la théorie des jeux pour arbitrer la
répartition des ressources entre les clients/joueurs prend tout son sens. En effet,
les différents demandeurs vont étre en concurrence pour obtenir cette ressource
rare, ou pour 'obtenir & moindre prix. Utiliser des jeux a plusieurs et surtout non-
coopératifs permettrait alors de modéliser cette situation et de pouvoir ensuite
proposer des solutions issues directement des outils développés dans la théorie des
jeux, a travers la proposition de stratégies optimales ou la recherhe d’équilibres
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par exemple.

C’est dans cette mesure que nous proposons un certain nombre de cas d’applica-
tion de jeux non-coopératifs quantiques dans un scénario d’allocation de ressources
et de gestion de production mettant en scéne plusieurs acteurs en concurrence, mo-
délisés alors comme des joueurs.

4.2 Scénario basé sur le Dilemme du Prisonnier

Nous allons voir, dans cette partie, I'intérét que pourrait avoir I’application du
dilemme du prisonnier, sous forme quantique, au sein d’un batiment intelligent.

4.2.1 Explication du scénario

4.2.2 Batiment intelligent

Imaginons un batiment composé de plusieurs étages (exactement 2 dans notre
cas, pour simplifier les calculs). A chaque étage de celui-ci, une consommation
propre a l'utilisateur doit étre comblée. Afin d’assurer I'alimentation des deux
consommateurs, le batiment dispose de deux moyens de production d’énergie.

L’un serait un moyen trés important tel que le réseau d’électricité considérée
comme un réseau disposant d’une puissance pouvant combler aisément les besoins
du batiment & lui seul. Cependant, ce dernier fournit ’éléctricité a un prix assez
conséquent.

Le second serait le fruit d’un investissement pour l'installation d’'un moyen de
production d’énergie renouvelable local. Ce dernier proposerait, par conséquent, un
cout d’électricité plus intéressant que le réseau d’électricité principal. Cependant,
ce dispositif ne permet, pas & lui seul, de combler la consommation des deux
consommateurs.

De plus, les deux consommateurs disposent de gestionnaire d’énergie. Ces der-
niers permettent de basculer entre les différents moyens d’apport en électricité : le
réseau principal (EDF) et le systéme d’énergie renouvelable.

Choix du systéme de production d’énergie secondaire

Nous pouvons imaginer d’utiliser des moyens de production d’énergie renouve-
lable tels que la géothermie, 1’énergie solaire ou encore 1'énergie du vent.
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Cependant, la géothermie semble étre un moyen trés difficile & exploiter. En
effet, ce moyen de production d’énergie depend fortement de la localisation géo-
graphique du site. Ce serait trés optimiste de pouvoir penser qu’un tel systéme
pourrait engendrer une production d’électricité a un faible coit (en prenant en
compte les frais d’installation).

L’installation d’une éolienne ne serait, elle aussi, pas trés simple et bénéfique.
Effectivement, les performances d’une éolienne dépendent fortement de la vitesse
du vent ( I'énergie est fonction de la vitesse au cube). Cette caractéristique est trés
fortement détériorée par la présence d’autres batiments aux alentours. Ainsi, les
éoliennes sont également exclues pour la production d’énergie pour un batiment.

Par contre, 'installation de panneaux photovoltaics (PV) semble étre envisa-
geable. Les contraintes de ce type de production ne sont pas trés exigeantes. Nous
pouvons imaginer que les PV soient installés sur le toit du batiment et ainsi cap-
ter I’énergie solaire aisément. Malgré cela, une caractéristique importante des PVs
doit étre prise en compte, celle de I'efficacité ou rendement de trnasformation en
enérgie électrique. Cette derniére est trés faible pour des PVs, de 'ordre de 15

Nous opterons donc pour 'installation de PVs.

4.2.3 Stratégies

Supposons que les 2 consommateurs doivent choisir entre 1’électricité du réseau
principal (Grid) et celle des PVs. Pour correspondre au dilemme du prisonnier, ces
derniers ne peuvent communiquer entre eux.

Le tableau des stratégies est préenté ci-dessous :

Utilisateur 2 }
Utilisateur 1 Grid PV
oy (5;0) | (1;1)

L’objectif de chaque joueur est de maximiser son gain individuel. Pour plus
de simplicité, nous avons choisi des valeurs arbitraires pour les gains. On pourrait
envisager de définir une fonction, qui dépenderait du prix de I'électricité et du
choix de 'utilisateur, afin de défnir le gain pour chaque joueur.

1. Stratégie (GG)
Dans ce cas, les deux utilisateurs choisissent d’utiliser le réseau principal
(EDF). Les deux joueurs ne prennent pas de risques et par conséquent optent
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pour le prix le plus élevé. Cette configuration n’est pas celle qui optimise le
gain individuel mais elle privilégie le gain mutuel. En effet, plus la consom-
mation est importante, plus le prix de l'électricité proposé par EDF sera
faible (ceci n’est applicable que durant les périodes ou la demande n’est pas
a son maximum).

. Stratégie (GS) ou (SG)

L’un des deux utilisateurs utilise I’énergie solaire (PV) pour satisfaire a ces
besoins électriques. Tandis que 'autre opte pour le réseau principal. Par
conséquent, la prise de risque est payante dans cette configuration puisque le
gain est maximal. Ceci est du au fait que le PV ne peut fournir de I’électricité
a bas cott qu’a un seul utilisateur (les moyens d’investissements n’ont pas
été suffisant afin de combler la demande de tous les utilisateurs). Par contre,
I’autre joueur sera quant a lui dans la moins avantageuse des positions. En
effet, vu que la demande d’électricité demandée au "Grid" n’est pas impor-
tante (moins importante que celle des deux consommateurs réunis), le prix
va devenir trés important (plus que dans la situation (G,G)).

. Stratégie (SS)

Cette configuration est la plus dangereuse. Les deux consommateurs décident
de consommer I'énergie solaire malgré que la production ne puisse combler
aux besoins des deux. Nous pourrions imaginer que, dans ce cas, un autre
systéme de controle va combler la différence en faisant appel au réseau (et ceci
a un cout non négligeable). Ainsi, les deux consommateurs devront payer le
cotit de I'¢lectricité venant des PVs mais également une partie supplémentaire
due au réseau. Cette configuration met en relief le coté néfaste de 'utilisation
commune des PVs par les deux consommateurs.

4.2.4 Reéalisation du jeu

Nous allons dans cette partie présenter un systéme qui permettrait de réali-
ser les stratégies quantiques [52]. Pour ce faire, les deux éléments principaux qui
constituent les outils que disposeraient les joueurs (utilisateurs), a savoir la porte
J et U, seront étudiés.

Porte .J

Chaque joueur détient un qubit en sa possession. 1 correspond au qubit détenu
par 'utilisateur 1 et ¥y correspond au qubit détenu par 'utilisateur 2. Ces derniers
sont dans 1'état |C'C) au début du jeu. Nous utilisons Popérateur .J afin d’obtenir
un systéme plus ou moins intriqué (selon la valeur de 7).
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Cet opérateur peut étre réalisé de maniére concréte et expérimentale a I'aide
de P'utilisation de "beam splitters" ( 4 diviseurs de faisceaux, dans le cas qui suit
ils réfléchissent 50

Ce systéme peut étre représenté de la maniére suivante :

..................................................

PS1

PS2

PS3

PS4

FIGURE 4.1 — Opérateur expériemental J

Sur cette figure, les "beam splitters" sont suivi de la mention BS. Kerr repré-
sente le "cross Kerr medium". Et les "phase shifter" sont nommés PS.

Les BS permettent de transformer un couple (a,b) en un couple (a’,b’) de la

maniére suivante :
a\ ([ cos(t) —isin(%)\ (d
v ) \—isin() cos(&) b

L’opérateur associé est nommée B (0). Sil’on applique cet opérateur aux couples
(a,b) suivants, nous obtenons :

(0)[1),10), = COS(%)ID 10}, — asin(

@ )[0),]1),
(0)10),[1), = cos(3)0),[1), — isin(

B
B )I1)a10),

NIDND

Ainsi, si nous considérons |C') = [1)|0) et |D) = |0)|1), nous obtenons :



Les "phase shifter", quant a eux, permettent d’assurer les transformations (ro-
tations) suivantes :

P(¢,—9)|C) = €|C)
P(¢,—¢)|D) = ¢|D)

Finalement, comme la figure I'indique, le systéme qui représente J peut étre
défini comme suit :

A ~ ~ ~ ~

J = By(=)Bs(=T) P(62, —02) P(61, —0)) K (7) Bo(Z) By ()

Porte U

Contrairement au dilemme du prisonnier classique ot I’on exprime directement
sa stratégie (par exemple, a I'aide de la valeur d’un bit : 0 ou 1) , la formula-
tion quantique permet de disposer d’un qubit ¢ d’action sur lequel différentes
opérations sont possibles pour I'ensemble des joueurs. En effet, 'ensemble de ces
opérations est défini par 'opérateur U dont la forme est rappelée ci-dessous :

o (€cos(0/2)  sin(6)2)
U(o,¢)= ( —sin(6/2) ei¢cos(9/2)>

avec 0 <O <met0< ¢ <m/2
Ce systéme peut étre représenté de la maniére suivante :

Sur celle-ci, nous pouvons remarquer que les types d’élements utilisés pour la
porte J sont également mis en place pour pouvoir assurer la fonction de 'opérateur
U, notament les "beam splitter" (au nombre de 2); les miroirs (au nombre de 2)
et les "phase shifter" (au nombre de 4). Cette fois-ci,ils sont disposés de maniére
différente.

De plus, nous pouvons associer les différents élements afin d’obtenir le resultat
souhaité pour U :

A~

U(0,¢) = P(0,—¢)U,(—5)P(¢,0)

Avec :



FIGURE 4.2 — Opérateur expériemental U

Ainsi, nous pouvons introduire les notions vues concernant le dilemme du pri-
sonnier pour pouvoir résoudre certains problémes liés a la gestion d’énergie. En
effet, 'utilisation de la théorie de I'information quantique permet de résoudre le
probléme lié a ce jeu (contrairement & ce qui est fait classiquement) et par consé-
quent celui rencontré lors du scénario avec la gestion d’énergie au sein d’un bati-
ment intelligent.

De plus, nous avons également pu constater que cette application quantique
est envisageable au niveau technique. Elle ne requiert pas des outils trés évolués
mais seulement quelques éléments déja utilisés dans le monde technologique.

4.3 Scénarios basés sur le CHSH et GHZ Game

Dans un environnement de production d’énergie, comme celui d’une centrale
ou d’un réseau de production électrique, le probléme de réponse a la demande et
au besoin d’énergie est un probléme récurrent et prépondérant. Diverses solutions
sont donc mises en place afin de répondre convenablement & la demande, et afin
d’équilibrer I'effort demandé aux diverses unités de production du réseau.

Néanmoins, ces solutions introduisent un besoin de communication important
et de qualité pour pouvoir synchroniser les différentes unités de production. Dans le
cas ol les unités de productions ne communiquent pas entre elles directement, elles
doivent alors communiquer avec un opérateur central qui va réguler les productions
en fonction des demandes. Voulant limiter aux maximum la communication avec
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cet opérateur central, c’est dans cette configuration que nous proposons quelques
scénarios basés sur les jeux quantiques CHSH-Game (2 joueurs) et GHZ/W-Game
(3 joueurs) en lien avec cette problématique.

4.3.1 Scénario & deux joueurs - CHSH-Game

Notre premier scénario prend place dans un batiment industriel quelconque.
Ce dernier est équipé d’'un systéme central électrique permettant de distribuer
I’énergie aux différentes machines industrielles. Ce systéme électrique globale regoit
de I'énergie de la part de deux unités de production différentes. Ces deux unités
de production fournissent déja un certain nombre de clients, et aucun d’entre eux
ne peut étre consacré exclusivement a notre batiment. De ce fait, les deux unités
de production se relayeront pour répondre aux besoins du batiment industriel
en question. On suppose que chaque unité de production peut envoyer a chaque
itération ou demande 30MW au batiment.

Chacune des unités de production ne posséde qu'une vision restreinte du sys-
téme global. En effet, deux capteurs locaux du systéme renseignent respectivement
chaque unité sur le besoin en énergie du systéme global. Les capteurs associés a
chaque unité de production n’observent pas la méme partie du systéme global dans
notre cas. De plus, les unités de production ne peuvent en aucun cas communiquer
entre elles une fois mises en route. Chaque capteur envoie une information binaire
a 'unité de production associée pour lui informer s’il y a un besoin ou non d’éner-
gie. Il peut arriver qu’un seul capteur détecte le besoin en énergie du batiment,
mais il peut arriver également que les deux capteurs saisissent cette information
et vont donc avertir les unités de production de cela. En revanche, si un besoin
existe en énergie, on est certain qu’'un des 2 capteurs au minimum le détectera.

De son coté, le systéme global centralise 1’énergie regue de I'exterieur avant de
la redistribuer a ses différents sous-systémes internes. Le systéme de centralisation
ne peut accepter ’énergie que d’une seule unité de production a la fois, de par son
dimensionnement. La réception simultanée d’énergie de la part des deux unités
entraine une surcharge au niveau de la centralisation et peut ammener vers une
déterrioration du matériel. La coordination des unités de production devra donc
intégrer cette contraine pour ne pas endommager et destabiliser le systéme.

Si, tout de méme, il arrive que les deux unités de production fournissent en
méme temps de ’énergie, un systéme dit "auxiliaire" s’assurera de protéger le
systéme en absorbant le surplus de charge qui aurait pu causer une déterioration
du matériel. Cette unité auxiliaire intervient également en cas de non réponse a la
demande du systéme global. Il s’assurera alors de fournir I’énergie qu’une unité de
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production aurait da fournir en attendant que les unités de production reprennent
convenablement leur réle. Son comportement peut donc s’apparenter a celui d’une
batterie, que 'on chargerait ou déchargerait en fonction des réponses des unités
de production aux demandes renseignées par les capteurs.

C’est alors dans ce contexte que 1’on propose d’introduire le CHSH-Game (voir
2.1 pour une définition détaillée) comme jeu quantique afin de permettre la co-
ordination des unités de production pour répondre au mieux aux demandes, en
prenant compte les contraintes énoncées ci-dessus.

L’arbitre envoyant les questions sera ici modélisé par les capteurs locaux. Cha-
cun des capteurs enverra donc sa question au joueur auquel il est lié. Les deux
joueurs seront effectivement les deux unités de production. Le systéme global mo-
délisera 'arbitre qui recoit les réponses de la part des unités de production sous la
forme d’information ou d’énergie produite directement. Le systéme global se charge
ensuite de répartir ’énergie recue, ainsi que d’avertir éventuellement 'unité auxi-
laire en cas de réponses non satisfaisantes (surcharge ou non-production). L’unité
auxiliaire n’est alors pas considérée comme un joueur a part entiére.

Le principal probléme sera donc de trouver moyen de coordonner les unités
de production pour minimiser la fréquence d’occurence de cas indésirables (non-
production ou surcharge), et ainsi solliciter au minimum l'unité auxiliaire. Une
fois la stratégie trouvée, on pourra dimensionner 'unité auxiliaire convenablement.
La suite de cette section s’attardera donc sur les résultats qu’offre les stratégies
classique et quantiques utilisées pour résoudre le CHSH-Game.

Dans la suite de notre propos, on notera P; et P les deux unités de production,
on notera Py l'unité auxiliaire. La question {1} de la part du capteur indique qu’il
y a besoin d’énergie, la question {0} qu’il n’y en a pas besoin. La réponse {0}
indique que 'unité ne produit pas, tandis que la réponse {1} indique que 'unité
de production va produire de I'énergie.

On définit également un certain nombre de pénalités qui vont correspondre a
la fréquence de cas indésirables. On définit alors une pénalité de non-production,
qui se produit lorsqu’un capteur au minimum informe d’un besoin et qu’aucune
des unités de production ne choisit de produire. On définit ensuite une pénalité de
surcharge, lorsque les deux unités de production vont produire simultanément. On
définit efin une pénalité de surproduction lorsque les deux capteurs n’informent
d’aucun besoin et que 'une des deux unités de production envoie tout de méme
de I'énergie. Afin d’évaluer la stratégie de maniére globale, on définit une pénalité
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FIGURE 4.3 — Schéma explicatif du systéme complet

globale comme une moyenne pondérée des trois pénalités ci-dessus. On donne 2
fois plus d’importance et de gravité a la pénalité de surcharge par rapport aux
deux restantes, car elle peut engendrer une déterrioration du matériel. On aura
alors la relation suivante :

, 1 . 1 . 1 .
penatheglobale = Qpenalltesurcharge + Zpenahtenonfproduction + Z_lpenalltesurproduction

Meilleure stratégie classique

Dans la recherche de la meilleure stratégie permettant de minimiser les cas
indésirables, que 'on appellera aussi pénalité, toutes les stratégies classiques ne
sont pas acceptables. En effet, les stratégies classiques ol un joueur répond la
méme chose quelque soit la question ne peut étre acceptable dans notre cas. En
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effet, si une unité de production choisit de ne jamais produire quelque soit le besoin
renseigné par son capteur, alors elle devient inutile et 'autre unité de production
ne pourra pas assurer le besoin a elle toute seule, comme supposé au départ. Le
cas oll une unité choisit de toujours produire est également problématique dans la
mesure oll cela peut multiplier les risques de surcharge, de production lorsqu’il n’y
en a pas besoin, et cela n’est pas possible par hypothése de départ.

Il ne nous reste donc que les stratégies dans laquelle la réponse a une question
est le complément de la réponse au complément de la question. Si I'on note p; ()
et po(z) la réponse apportée par 'unité de production Py et P, respectivement, a
la question z, alors on liste les différentes stratégies classiques restantes par ligne :

Stratégie 1: p1(0) =0, pi(1)=1, pa(0) =0, po(1) =1
Stratégie 2 : p1(0) =0, pi(1)=1, p(0) =1, po(1)=0
Stratégie 3 : p1(0) =1, pi(1) =0, p(0) =0, pa(l)=1
Stratégie 4 : pi(0) =1, pi(1) =0, p(0) =1, pz(1) =0

On remarque tout d’abord que le cas de surcharge est inévitable quelque soit
les stratégies, et qu’il arrive dans i des cas.

On observe ensuite que la stratégie 2 améne a une production de la part de
P, alors que les deux capteurs envoient I'information {00}. De plus, dans le cas
ou le second capteur avertit d'un besoin d’énergie, les deux unités de production
renverrons {00} ce qui nous améne dans un cas de non-production. On peut établir
les mémes remarques pour la stratégie 3.

Pour ce qui concerne la stratégie 4, elle est plus problématique dans la mesure
ou lorsque les deux capteurs envoient 'information {00}, les unités de production
produisent un cas de surchage, ce qui va obliger l'auxiliaire F, a absorber une
quantité double a celle qu’il doit absorber lorsqu’un il y a une surcharge et qu'un
capteur au minimum informe d’un besoin en énergie.

On en conclut alors que la meilleure stratégie est la stratégie 1, stratégie consis-
tant a produire lorsqu’on informe d’un besoin, et ne pas produire dans le cas
contraire. On évite alors le cas de non-production, car les deux unités de pro-
duisent pas uniquement lorsque les deux capteurs leur informent d’un non besoin
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d’énergie par la question {00}. On évite également le cas de surproduction de ce
fait.

On présente alors ci-dessous, I’évolution des différentes pénalités en fontion
du nombre de tours de jeu effectués. On remarque alors que la pénalité de non-
production et celle de surproduction est nulle pour cette stratégie. La pénalité de
surcharge est bien de 25% comme en théorie, tandis que 1’on converge bien vers
12.5% pour la pénalité globale.

1.07 0.5-
0.9-
0.8- 0.4-
0.7-
0.6 0.3
0.5-
0.4- 0.2-
03]
0.2 T 0.1
2000 4000 6000 8000 10000 2000 4000 6000 8000

FIGURE 4.4 — Evolution de la pénalité de surcharge (gauche) et globale (droite)
au fil des itérations pour la stratégie classique optimale

En ce qui concerne le comportement de l'unité auxiliaire F,, il devient avec
cette stratégie classique uniquement uni-directionnel, dans la mesure ou il ne doit
fournir en aucun cas de ’énergie au systéme, et ne fait qu’absorber 1’énergie de
surcharge pour préserver le systéme. Modéliser cette unité F, par une batterie
ne serait alors pas le meilleur choix. Une des solutions possibles est d’imaginer
I’auxiliaire F, comme un relais qui couperait le circuit avec une des unités de
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production en cas de surcharge, a la place d’absorber cette énergie. Ci-dessous est
représenté la sortie de 'auxiliaire Fy. Une valeur négative implique que 'auxiliaire
absorbe le courant de surcharge.
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FIGURE 4.5 — Evolution de 'utilisation de 'auxiliaire P, au fil des itérations pour
la stratégie classique optimale

Résultats de la stratégie quantique

Dans cette sous-section, on sintéressera a la performance de la stratégie quan-
tique du CHSH appliquée a notre probléme d’allocation de ressources, en étudiant
la nature des pénalités atteintes.

Dans cette stratégie, les deux unités de production vont donc partager un état
de bell |[¢) = \%(\Om + \11>>. L’unité P, sera assimilée au joueur A, et l'unité
P; sera assimilée au joueur B, selon les notations posées en section 2.1. Chaque

joueur va donc appliquer sa stratégie en fonction de l'information recue par son
capteur, et mesurer son qubit dans la base convenable.

96



Si ’on cherche & déterminer analytiquement les différentes valeurs de pénalités,
il serait plus simple, vu le nombre de cas possibles, de lister les réponses possibles et
leur probabilité en fonction des questions, et d’ensuite pouvoir établir de maniére
simple le calcul.

Question | Réponse | Probabilité pour Type de
une réponse pénalité
{00} {00} / {11} 1¥3%0.8536 Aucune / Surcharge
{00} {01} / {10} 1¥3%0.1464 Surprod / Surprod
{01} {01} / {10} 1¥3%0.8536 Aucune / Aucune
{01} {00} / {11} T¥2%0.1464 Nonprod / Surcharge
{10} {01} / {10} 1¥3%0.8536 Aucune / Aucune
{10} {00} / {11} 1¥3%0.1464 Nonprod / Surcharge
{11} {01} / {10} 1¥2%0.8536 Aucune / Aucune
{11} {00} / {11} 1¥3%0.1464 Nonprod / Surcharge

FIGURE 4.6 — Probabilités d’occurence de la réponse en fonction de la question, et
pénalité associée

Aprés calcul & partir du tableau, on se rend en effet compte des différentes
valeurs des pénalités théoriques :

1 3
surcharge = 3 * 0.8536 + 3 x(0.1464 = 0.1616
, 3
nonproduction = 3 x 0.1464 = 0.0549

2
surproduction = 3 x 0.1464 = 0.0366

globale = 0.5 % 0.1616 + 0.25 * 0.0549 + 0.25 % 0.0366 = 0.103675
En observant les résultats de la simulation, on voit en effet que les pénalités
convergent vers ces valeurs. On en déduit surtout que la pénalité de surcharge

est nettement inférieure pour la stratégie quantique par rapport a la stratégie
classique. Les pénalités de non-production et de surproduction ne sont pas nulles,
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FIGURE 4.7 — Evolution de la pénalité de non-production (gauche) et de surpro-
duction (droite) au fil des itérations pour la stratégie quantique

mais trés faibles tout de méme. Au final, on obtient une meilleure minimisation de
la pénalité globale avec la stratégie quantique.

En ce qui concerne 'unité auxiliaire F, elle n’agit plus maintenant comme unité
qui absorbe seulement, mais dans les cas de non-production, 'unité devra produire
de I’énergie. On peut alors cette fois-ci la modéliser sous la forme d'une batterie
qui se charge et décharge respectivement en cas de surcharge/surproduction et de
non-production. Etant donné que les cas de surcharge et surproduction sont plus
fréquents que les cas de non-production, la batterie va avoir tendance a plus se
charger que se décharger, ce qui assure bien le fait que la batterie soit chargée
et opérationelle lorsqu’il faudra fournir de I’énergie en cas de non-production des
unités P et Ps.
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FIGURE 4.8 — Evolution de la pénalité de surcharge (gauche) et globale (droite)
au fil des itérations pour la stratégie quantique
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la stratégie quantique
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4.3.2 Premier scénario & 3 joueurs - GHZ-Game

Dans cette partie, nous proposons un scénario analogue a celui présenté pour
2 joueurs (4.3.1), faisant intervenir cette fois ci 3 joueurs et donc modélisé a I'aide
du GHZ-Game (voir section 2.2).

Nous nous plagons toujours dans la cadre d’une structure ou un batiment in-
dustriel relié a des producteurs extérieurs. Ce batiment est relié alors a 3 unités de
productions. Les unités peuvent fournir la méme puissance a notre batiment, mais
aucune unité ne peut étre consacrée aux besoins de notre batiment. Les 3 doivent
donc étre coordonnées pour répondre au mieux a la demande.

Chaque unité de production dispose toujours d’un capteur local et indépendant
aux autres ayant une vision restreinte sur les besoins du batiment en énergie.
Chaque unité ne peut, en outre, communiquer avec les autres unités de production.
Il peut arriver que seul un capteur détecte le besoin en énergie du batiment, mais il
peut arriver également que plusieurs capteurs saisissent cette information et vont
donc avertir les unités de production de cela. En revanche, si un besoin existe en
énergie, on est certain qu'un des 3 capteurs au minimum le détectera.

La batiment est toujours limité en terme de puissance recevable simultanément.
Ce dernier dispose d'une unité centrale d’alimentation qui se charge de répartir
I’énergie issue des trois unités aux sous-systémes ayant un besoin. Si plus d’une,
c’est a deux ou trois, unités de production produisent en méme temps, I'unité
centrale n’est pas dimensionnée pour cette charge, ce qui peut induire une détério-
ration du matériel. De la méme maniére que précédemment, une unité auxiliaire
sera la pour absorber la puissance supplémentaire d’une ou deux unités selon le
cas de figure, pour protéger la structure. Il aura également pour but de fournir de
I’énergie lorsqu’aucune unité ne répondra a une demande informée par les capteurs.

On cherchera alors a coordonner les unités de production pour produire lorsque
la demande est renseignée par les capteurs, ne pas produire lorsqu’il n’y a pas de
besoin, et éviter de produire simultanément, ceci afin de solliciter au minimum
I'unité auxiliaire noté Fy. On dénote aussi les 3 unités de production par P;, P et
Ps.

On définit aussi, comme dans le cas précédents, des pénalités qui nous per-
mettent de connaitre la fréquence d’occurence de cas indésirables (non production,
surcharge, ...) et de pouvoir en déduire ensutie les répercutions sur Pauxiliaire P.
On définit alors une pénalité de non-production qui se définit par le nombre de fois
ou les unités de production n’ont pas produit (réponse {000}) alors que les capteurs
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ont averti d’un besoin en énergie, sur le nombre total d’itérations du protocole. On
définit la pénalité de surproduction, qui intervient lorsque 1’on produit alors qu’il
n’y a pas de demande. La pénalité de surcharge, stirement la plus importante, qui
donne une indication sur la proportion de cas ot deux ou trois unités de produc-
tion envoient simultanément leur production, ce qui peut entrainer une surcharge
du systéme. Enfin, on définit une pénalité globale, nous permettant d’avoir une
apréciation globale du systéme, telle que :

1 1 1
globale = §surcharge + Znonproduction + Zsurproduction

On propose alors, dans ce contexte, d’utiliser le GHZ-Game pour solutionner ce
probléme d’allocation de ressources. L’arbitre envoyant les question sera modélisé
par les 3 capteurs envoyant une information binaire de besoin d’énergie aux unités
de production. Par exemple, la question {010} signifie que seulement le second
capteur a détecté le besoin en énergie du systéme. De ce fait, les 3 joueurs, ne
pouvant communiquer entre eux, seront les 3 unités de production P, P, et P3. Par
exemple, la réponse {110} signifie que les deux premiéres unité vont produire mais
pas la troisiéme (cas de surcharge). Enfin, les 3 joueurs renvoient leur réponse a
Parbitre, qui sera cette fois-ci modélisé par I'unité centrale qui regoit et redistribue
I’énergie dans le systéme global du batiment. C’est I'unité centrale qui se charge
en suite de solliciter 'unité auxiliaire convenablement, ce qui place ce dernier en
dehors du GHZ-Game, et n’est donc pas considéré comme un joueur a part entiére.

Meilleure stratégie classique

On s’intéresse alors dans cette sous-section a la meilleure stratégie classique
pouvant etre mise ne place par les 3 joueurs, de telle sorte & minimiser au mieux
les pénalités, et principalement la pénalité globale. Toutes les stratégies ne sont
pas envisageables pour les 3 joueurs, et cela est dii au contexte d’application du
GHZ-Game. En effet, aucune unité de production ne peut etre consacrée a notre
systéme, cela implique qu’aucun joueur ne peut adopter la stratégie de toujours
répondre {1}. De plus, chaque unité doit produire de I’énergie pour le systéme,
donc la stratégie de toujours répondre {0}. Il ne reste alors que les 8 stratégies
possibes suivantes :

Stratégie 1 : p1(0) =0, pi(1) =1, p2(0) =0, po(1) =1, p3(0) =0, p3(1) =1

Stratégie 2 : p1(0) =0, pi(1) =1, p(0) =0, pa(1)=1, p3(0) =1, p3(1)=0
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Stratégie 3 : pi(0) =0, pi(1) =1, p2(0) =1, p2(1) =0, p3(0) =0, ps(1) =1

Stratégie 4 : p1(0) =0, pi(1) =1, p2(0) =1, po(1) =0, p3(0) =1, p3(1) =0

Stratégie 5: p1(0) =1, p1(1) =0, p2(0) =0, po(1) =1, p3(0) =0, p3(1) =1

Stratégie 6 : pi1(0) =1, pi(1) =0, p2(0) =0, po(1) =1, p3(0) =1, ps(1) =0

Stratégie 7: p1(0) =1, pi(1) =0, p2(0) =1, po(1) =0, p3(0) =0, p3(1) =1

Stratégie 8 : p1(0) =1, pi(1) =0, p(0) =1, p2(1)=0, p3(0) =1, p3(1)=0

On remarque tout d’abord quelque soit la stratégie, on ne peut empécher les cas
de surcharge avec cette stratégie. Pour rappel, les cas de surcharge interviennent
lorsque les réponses de la part des unités de productions sont : {011}, {101}, {110}
ou {111}. On a alors 50% de pénalité de surcharge quelque soit la stratégie.

La meilleure stratégie classique sera donc celle qui minimise les autres pénalités
(non-production et surproduction). En effectuant une analyse comme fait dans le
scénario a 2 joueurs, on en conclut que c’est la stratégie 1 qui est la meilleure.
Cette stratégie consiste en effet 4 répondre la question envoyée par I'arbitre. Ainsi,
si le capteur avertit d’un besoin, 'unité produira a chaque fois, et inversement, s’il
n’y a pas de besoin averti par son capteur, alors 'unité ne produira pas. Avec cette
stratégie, on annule totalement les pénalités de non-prduction et de surproduction.
Ceci nous améne donc a une pénalité globale de 25%.

En ce qui concerne le comportement de I'unité auxiliaire Py, il devient avec cette
stratégie classique uniquement uni-directionnel, dans la mesure oii il ne doit fournir
en aucun cas de I’énergie au systéme, et ne fait qu’absorber ’énergie de surcharge
pour préserver le systéme.On se retrouve alors dans la méme configuration que
pour 2 joueurs. L’auxiliaire P, étant donné qu’il ne fournit & aucun moment de
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FIGURE 4.10 — Evolution de la pénalité de surcharge (gauche) et globale (droite)
au fil des itérations pour la stratégie classique optimale

I’énergie, doit étre modélisé par systéme qui ne se contenterait que d’absorber et
d’utiliser autrement cette énergie pour ne pas la perdre. On pourra alors imaginer
relier cet auxiliaire vers un autre systéme demandant de 1'énergie, rendant alors
Py comme un redirigeur de surplus de production.
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FIGURE 4.11 — Evolution de 'utilisation de 'auxiliaire P, au fil des itérations pour
la stratégie classique optimale

Stratégie quantique du GHZ-Game

Dans cette sous-section, on sintéressera a la performance de la stratégie quan-
tique du GHZ appliquée a notre probléme d’allocation de ressources, en étudiant
la nature des pénalités atteintes.

Dans cette stratégie, les trois unités de production vont donc partager un état

V) :

) = %(|000> —|011) — [101) — |110>)

L’unité P, sera assimilée au joueur A, 'unité P, sera assimilée au joueur B,
et I'unité Pj3 sera assimilée au joueur C selon les notations posées en section 2.2.
Chaque joueur va donc appliquer sa stratégie en fonction de 'information recue
par son capteur, et mesurer son qubit dans la base convenable.
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Si l’on cherche & déterminer analytiquement les différentes valeurs de pénalités,
on peut utiliser le méme raisonnement que celui mené pour le scénario a 2 joueurs.
Aprés études des cas, en fonction de la question et de la réponse, et calcul des
probabilités, on obtient alors les valeurs suivantes :

1 1
duction = 4% — x — = — = 0.062
nonproduction *8*8 16 0.0625
h 6 * +16>x<1>x<1 ’ 0.4375
surcharge = — % — —x—=—=0.
g s 4 §°8° 16
surproduction = 0
7 1 15
=t — 4+ 0=— =0.234
globale 32+64+0 o1 0.234375

On remarque alors que la probabilité de non-production est supérieure a celle
que 'on obtient avec une stratégie classique, mais que cela reste assez faible. Pour
le cas de suproduction, il n’intervient dans aucun des deux cas. Cependant, nous
avons une légére amélioration de la pénalité de surchage, qui était de 0.5 pour
le cas classique. Ceci nous améne alors & une amélioration de la pénalité globale
associée a la stratégie quantique.

Enfin, en ce qui concerne 'unité auxiliaire P, elle peut étre modélisée sous la
forme d’une batterie qui se charge et décharge respectivement en cas de surcharge
et de non-production. Etant donné que les cas de surcharge sont plus fréquents
que les cas de non-production, la batterie va avoir tendance a plus se charger
que se décharger. Ce désavantage assure cependant que la batterie soit chargée
et opérationelle lorsqu’il faudra fournir de I’énergie en cas de non-production des
unités Py, Py et Ps.
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FIGURE 4.13 — Evolution de la pénalité de globale (gauche) et de l'utilisation de
lauxiliaire P, au fil des itérations pour la stratégie quantique
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4.3.3 Second scénario a 3 joueurs - W-Game

Pour ce dernier scénario, nous nous placerons dans ’habitation d’un particulier.
Celui-ci a fait le choix d’étre un peu plus autonome que les autres consommateurs,
et de disposer de sources d’énergie alternatives. Ainsi, il va disposer de trois sources
d’énergie au total : le réseau électrique national (Grid), une association de pan-
neaux photovoltaiques (PPV), et une mini-éolienne (EOL).

Le consommateur désire installer un systéme qui va gérer les trois sources, et
les faire participer a tour de role pour exploiter 1’énergie de chacun, et ne pas
user d’une source en particulier. De plus, on doit pouvoir gérer la disponibilité de
chaque source, notamment des énergies renouvelables.

Le systéme que nous proposons réagira comme suit. A chaque tour, au maxi-
mum 2 sources seront choisies par le systéme. En effet, s’il y a du vent et du soleil,
on choisira alors les deux sources PPV et EOL, ce qui nous permet de ne pas payer
et utiliser le Grid. S’il n’y a pas de vent et du soleil, on utilisea les sources PPV et
Grid. S’il n’y a pas de soleil mais du vent, on utilisera les sources EOL et Grid. S’il
n’y a ni vent, ni soleil, on n’utilisera que le Grid. Ce dernier cas nous intéressera
moins dans la mesure ot c’est le cas qui concerne la majorité des consommateurs
en France.

Ainsi, si 'on retient les 3 premiéres possibilités, le systéme choisira & chaque
fois 2 sources parmi 3. C’est dans ce contexte que I'idée d’associer ce systéme de
régulation de production au W-Game prend tout son sens. En effet, dans le W-
Game, I'arbitre choisit aléatoirement 2 joueurs parmi 3 pour jouer au CHSH Game
en fin de compte. Dans notre cas, c’est le systéme d’alimentation de ’habitation
qui va choisir 2 sources parmi 3. La présence de vent et/ou de soleil peut étre vue
comme aléatoire dans un sens, ce qui rapproche le fonctionnement du systéme et

du W-Game.

Les 3 sources vont donc partager un état quantique de type |IW), et 'un des
joueurs sera mi de coté en fonction de I’état météorologique. Ensuite, on pourra
définir les conditions de gain afin de satisfaire au mieux les besoins en utilisation
des batteries associées aux énergies renouvelables, et ceci doit étre ensuite traduit
par 1'utilisation de stratégies quantiques permettant de tendre vers des meilleurs

résultats. Ainsi, si 'on change la condition de gain, la stratégie quantique du
CHSH-Game ne serait
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4.4 Scénario basé sur le Minority Game

Un autre scénario que nous présentons dans cette section, permettant de mettre
en application les résultats de jeux quantiques, est un scénario basé sur le Mino-
rity Game (voir section 2.5). Le probléme prend toujours place dans un contexte
d’optimisation de ’allocation des ressources en fonction des unités de production
et des unités consommatrices.

Prenons place alors dans un batiment abritant 4 entreprises. Chaque entre-
prise posséde un étage du batiment, et chaque étage est isolé énergétiquement des
autres : I’énergie demandée et recue est donc propre a chaque entreprise. On dénote
par Eq, Es>, E3 et E, les quatres entreprises, qui constituent les consommateurs.

Du co6té producteur, on dispose de deux sources : le réseau électrique et une
association d’un certain nombre de panneaux photovoltaiques. On notera alors
par Grid et PPV, respectivement, les deux sources citées a 'instant. On considére
également que la source PPV est plus avantageuse par rapport au Grid, de par
le prix principalement, et que donc les entreprises vont tenter d’en bénéficier au
maximum a la place du Grid. Enfin, la source PPV n’est dimensionnée que pour
répondre aux besoins d’une seule entreprise.

L’utilisation du Minority Game pour cette situation intervient dans la mesure
ol toutes les entreprises vont vouloir utiliser la source PPV en priorité. On propose
alors une stratégie quantique basée sur la version quantique du Minority Game a
4 joueurs (voir section 2.5.4) permettant de gérer Iattribution de ’énergie solaire
aux différentes entreprises.

Tout d’abord, les 4 entreprises vont partager un état quantique intriqué afin
de pouvoir appliquer la stratégie quantique. Chaque entreprise posséde donc un
qubit de 1'état |¢) définit par :

1 ,
) = E(|0E10E20E30E4> +ille L e 1s,)

A chaque tour du jeu, sachant que chaque tour est indépendant des autres,
Pentreprise qui désire jouer au jeu, et donc qui veut pouvoir bénéficier de la source
PPV, va appliquer une stratégie quantique (une opération unitaire) sur son qubit,
puis le mesurer et 'envoyer directement au systéme gérant la source d’énergie so-
laire. Aussi I'entreprise qui choisit de ne pas "tenter sa chance" avec la source PPV
et choisit le Grid ne va pas agir sur son qubit et ne va pas le mesurer ni I’envoyer
au systéme gérant le PPV : son comportement peut s’apparenter a uniquement
appliquer l'identité sur son qubit.
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La stratégie quantique optimale pour 4 joueurs, comme présenté en section
2.5.4, est notée a et est définie par :

a= %COS (f—6>([+iX) + %Sin <%>(iY—iZ}

Le systéme gérant 'attribution de I’énergie solaire recoit alors les valeurs mesu-
rées pour chaque joueur et va donc délivrer I’énergie solaire au joueur minoritaire.

Si les 4 entreprises choisissent de participer au jeu, I’énergie sera donc délivrée
a la seule entreprise minoritaire. Si toutes les entreprises répondent toutes la méme
réponse, ou si deux entreprises répondent {0} et deux autres répondent {1}, alors
aucune des entreprises ne recevra de ’énergie du PPV.

Si 3 entreprises choisissent de participer au jeu, ’énergie sera donc délivrée a la
seule entreprise minoritaire. Si les 3 entreprises répondent toutes la méme réponse,
alors aucune de ces 3 trois entreprises ne recevra d’énergie solaire.

Si seulement 2 entreprises choisissent de participer au jeu, alors le systéme
solaire délivera de I’énergie a I'entreprise qui aura envoyé {1} alors que l'autre a
envoyé {0}. On peut supposer que les entreprises ne connaissent pas le protocole de
décision du systéme PPV lorsque deux joueurs jouent. De méme, si les 2 entreprises
répondent la méme réponse, alors aucune de ces 2 entreprises ne recevra d’énergie
solaire.

Dans le cas ou les 4 entreprises jouent, comme détaillé en section 2.5.4, si
les 4 entreprises jouent la stratégie quantique a, alors chaque entreprise a 25%
de chances d’obtenir de I’énergie de la part des panneaux photovoltaiques. Cette
stratégie quantique permet une efficacité et une équité entre les entreprises, et on
ne peut faire mieux avec une stratégie classique (12.5% en classique).

Si 'on se place dans le cas ol une entreprise choisit dés le départ d’utiliser le
Grid, c’est a dire que 3 entreprises vont jouer au Minority Game pour la source
PPV, c’est alors un nouveau cas de figure non étudié dans la partie théorique de
présentation du jeu. En effet, les 4 joueurs partageront toujours I’état intriqué [)),
méme si un des joueurs ne participe pas. Cependant, le qubit du joueur qui ne joue
pas ne sera ni modifié, ni mesuré. Les trois autres joueurs vont alors appliquer leur
stratégie quantique car ils ont décidé de jouer. Si ’on suppose que c¢’est la premiére
entreprise qui ne joue pas, alors on obtient alors 1’état final |¢)3) aprés application
des stratégies, tel que :
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1
V2

Or, en utilisant 'expression de a, on peut établir que :

[¥3) =T @a®a®ald) = (\0>(a!0>)(a!0>)(a|0>) + i|1>(all>)(a\1>)(a!1>)>

al0) = % [(cos (%) —isin (116)>|O) + <sin (116) + i cos (%))H)}

all) = % [(sin (%) + i cos (%)>|0> + (cos (116) + ¢sin (%)>|1>]

En injectant ces résultats dans I’expression de [¢3), on obtient alors un état
équivalent a :

1
[1h3) ~ 1 (|0000)+|0001>+ |0010) +|0011)+]0100)+|0101) +|0110)+{0111) +|1100)

+[1101) + [1110) + [1111) + |1000) 4 |1001) + [1010) + |1011>>

Les trois joueurs E,, F3 et E4 vont donc mesurer leur qubit et 'envoyer au
PPV. Ainsi, le premier qubit n’est pas a considérer dans I’état global partagé par
les 4 joueurs lors de la mesure, mais seulement les 3 derniers. Le lecteur pourra
alors remarquer que chaque joueur dispose de la méme probabilité de gain qui
est de & = % = 25%, qui est alors la méme que celle obtenue lorsque 4 joueurs

16
choisissent de jouer pour la source PPV.

Si I'on se place maintenant dans le cas otl 2 entreprises vont jouer au Minority
Game pour la source PPV, c’est aussi un nouveau cas de figure non étudié dans
la partie théorique de présentation du jeu. Comme précédemment, les 4 joueurs
partageront toujours I’état intriqué [¢). Si ’on suppose que ce sont les deux pre-
miéres entreprises qui ne jouent pas, alors on obtient alors 1’état final |1)9) aprés
application des stratégies, tel que :

1
V2

On remplace alors 'expression de a|0) et de a|l) dans I’équation ci-dessus ce
qui nous donne un état équivalent a :

o) =T @I ®a®al) = (|00>(a!0>)(a!0>) + Z'|11>(a!1>)(a!1>)>
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1
|1g) ~ NG (yoooo> +|0001) + |0010) + |0011) + |1100) + |1101) + |1110) + 11111>>

Les trois joueursFs, E3 et E, vont donc mesurer leur qubit et 'envoyer au PPV.
Ainsi, les deux premiers qubits ne sont pas a considérer dans I’état global partagé
par les 4 joueurs lors de la mesure, mais seulement les 2 derniers. On rappelle que
pour 2 joueurs, c’est le joueur qui envoie 1 alors I'autre a envoyé 0 qui est considéré
comme gagnant par le systéeme d’attribution du PPV. On pourra alors vérifier que
chaque joueur dispose de la méme probabilité de gain qui est de % = i = 25%,
qui est alors la méme que celle obtenue lorsque 4 ou 3 joueurs choisissent de jouer
pour la source PPV.

Alinsi, la source énergétique que constitue cette association de panneaux solaires
pourra grace a ce "protocole” répartir I’énergie équitablement entre les étages de-
mandant de I’énergie. En recevant les mesures de la part des joueurs engagés dans
la partie a un tour donné, il saura combien de il y a joueurs, qui ils sont, comment
déterminer s’il y a une minorité ou non, et qui est le minotaire. L’avantage d’in-
troduire une stratégie quantique permet aux joueurs d’atteindre des probabilités
de gain supérieures a une stratégie classique basique. L’intrication joue encore une
fois un role prépondérant dans ce processus. On supprime également la nécessité
de disposer d’une unité centralisant toutes les demandes des clients, puis commu-
niquant avec la source PPV, puis ensuite seulement attribuant arbitrairement ou
aléatoirement (jet de dés par exemple) I’énergie & une entreprise.

113



Conclusion

Synthése des résultats

A la fin du projet, nous sommes arrivé a un résultat satisfaisant, que 'on peut
étudier en deux temps.

Tout d’abord, et c’est ce qui fait 'objet de la premiére partie du rapport, nous
avons pu introduire un certain nombre de protocoles de communication quantique,
et établir un état de 'art assez fourni et détaillé des jeux quantiques les plus
répandus.

Dans la seconde partie, nous avons pu saisir les enjeux du futur de I’énergie
en terme de communication dans les Smart Grid notamment, et concernant le
probléme d’allocation de ressources et de sécurité. Nous avons pu a ce titre proposer
5 scénarios différents mettant en scéne un systéme énergétique et un jeu quantique
permettant de modéliser et de proposer une résolution quantique du probléme.

Enfin, certaines pistes proposée au cours du projet n’ont pas pu étre dévelop-
pées par manque de temps et de moyens matériels. Nous les présentons alors dans
la derniére sous-section 4.4 du rapport, afin de garder une trace écrite de ces idées,
et de pouvoir les développer par la suite, par nous méme, ou permettre & d’autre
scientifiques de s’approprier ces idées.

Bilans personnels

Bilan personnel - Hamza

C’est un projet qui fut intéressant pour moi sous divers aspect. Il me permit
de découvrir de nouveaux jeux quantiques, et donc d’agrandir notre culture dans
ce domaine. Cela pourrait nous donner des idées et des perspectives pour des tra-
vaux de recherches futurs, dans ce domaine ou dans un autre. Le projet me permit
également de lier cette discipline, qu’est la théorie de 'information quantique, a
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une application et un cas concert d’implémentation. J’ai également pu apprendre
a travailler des colléegues d’autres spécialités, et & m’exprimer de maniére claire
pour établir une connexion entre les disciplines. Enfin, cela m’a aussi permit de
développer mes connaissances dans le domaine de I’énergie et de la physique quan-
tique.

Bilan personnel - Ismaél

Ce projet s’est révélé trés enrichissant dans la mesure ot il nous a permis d’avoir
une approche concréte de notre futur métier d’ingénieur. En effet, le respect des
délais, la prise d’initiative et le travail en équipe seront des aspects essentiels
de notre futur métier. Au terme de ce projet, nous avons acquis de nombreuses
connaissances ou compétences nouvelles concernant la théorie des jeux ainsi que
sur les principes de gestion d’énergie. Nous avons pu enrichir nos connaissances sur
le principe des réseaux électriques actuels et futurs. Ce projet, qui allie des compé-
tences informatiques et énergétiques, nous a également permis de faire "réellement"
de la recherche pure. En effet, le sujet était, dés le départ, trés ambitieux et mais
nous avons pu constater par la suite qu’il n’était pas sans utilité. Les recherches
scientifiques s’accentuent énormément sur ce nouveau type d’application.

Poursuite et ouvertures

L’un des sujets le splus intéressants que nous n’avons pas eu le temps de déve-
lopper, est de trouver une alternative a la communication bas débit implémentée
présentée dans I'article [53] de Mr. Fei Gao entre autres, qui nous a rencontré pour
nous faire part de cette problématique. L’idée était de remplacer cette communi-
cation par une communication quantique.

D’autre part, nous aurions aimé pousser plus loin I’étude des multiplexeurs
quantiques, et de voir si une application au monde de I'énergie ne serait pas pos-
sible, notamment & des fin de communication ot d’implémentations dans des sys-
témes électroniques.

Un sujet moins en rapport avec l’énergie mais qui nous intéresse, et de pou-
voir développer un protocole de Superdense Coding pour les qutrits, et d’éven-
tuellement voir 'influence du type d’intrication paratagé sur les performances du
Superdense coding.

Enfin, on pourrait imaginer une application concréte du protocole quantique
de téléportation ou de sécurité (BB84 - B92) a des fins de sécurisation des données
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par exemple. Une idée aussi survenue en fin de projet est d’envisager d’utiliser les
algorithmes de Grover et de Deutsch-Jozsa pour optimiser les temps de calculs liés
au algorithmes gérant le domaine énergétique.

Nous espérons que nos travaux serviront d’inspiration aux chercheurs, ingé-
nieurs et techniciens afin d’implémenter, repenser, améliorer et déduire de nou-
velles technologies et systémes qui faciliteraient la vie de ’étre humain sur notre
Terre.
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